Efficient CdTe Nanocrystal/TiO2 Hetero-Junction Solar Cells with Open Circuit Voltage Breaking 0.8 V by Incorporating A Thin Layer of CdS Nanocrystal
Abstract
:1. Introduction
2. Experiment Procedure
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gur, I.; Fromer, N.A.; Geier, M.L.; Alivisators, A.P. Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution. Science 2005, 310, 462–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Firdaus, Y.; Kirmani, A.R.; Liang, R.Z.; Hu, H.; Liu, M.; Labban, A.E.; Hoogland, S.; Beaujuge, P.M.; Sargent, E.H.; et al. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering. ACS Energy Lett. 2018, 3, 1307–1314. [Google Scholar] [CrossRef]
- Wen, X.; Chen, C.; Lu, S.; Li, K.; Kondrotas, R.; Zhao, Y.; Chen, W.; Gao, L.; Wang, C.; Zhang, J.; et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 2018, 9, 2179. [Google Scholar] [CrossRef] [PubMed]
- Li, D.B.; Yin, X.; Grice, C.R.; Guan, L.; Song, Z.; Wang, C.; Chen, C.; Li, K.; Cimaroli, A.J.; Awni, R.A.; et al. Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation. Nano Energy 2018, 49, 346–353. [Google Scholar] [CrossRef]
- Crisp, R.W.; Panthani, M.G.; Rance, W.L.; Duenow, J.N.; Parilla, P.A.; Callahan, R.; Dabney, M.S.; Berry, J.J.; Talapin, D.V.; Luther, J.M. Nanocrystal Grain Growth and Device Architectures for High-Efficiency CdTe Ink-Based Photovoltaics. ACS NANO 2014, 8, 9063–9072. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Du, X.; Zeng, Q.; Yang, B. Recent development and understanding of polymer-nanocrystal hybrid solar cells. Mater. Chem. Front. 2017, 1, 1502–1513. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, H.; Yuan, H.; Yang, Z.; Fan, J.Z.; Kim, J.; Voznyy, O.; Gong, X.; Quan, L.N.; Tan, C.S.; et al. Perovskite seeding growth of formamidinium-leadiodide-based perovskites for efficient and stable solar cells. Nat. Commun. 2018, 9, 1607. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 2012, 6, 591–595. [Google Scholar] [CrossRef]
- Anderson, I.E.; Breeze, A.J.; Olson, J.D.; Yang, L.; Sahoo, Y.; Carter, S.A. All-inorganic spin-cast nanoparticle solar cells with nonselective electrodes. Appl. Phys. Lett. 2009, 94, 063101. [Google Scholar] [CrossRef] [Green Version]
- Townsend, T.K.; Foos, E.E. Fully solution processed all inorganic nanocrystal solar cells. Phys. Chem. Chem. Phys. 2014, 16, 16458. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, Y.; Lin, Y.; Gao, K.; Zhang, Y.; Liu, K.; Yang, Q.; Zhou, X.; Qin, D.; Wu, H.; et al. Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer. J. Nanopart. Res. 2013, 15, 2053. [Google Scholar] [CrossRef]
- Jasieniak, J.; MacDonald, B.I.; Watkins, S.E.; Mulvaney, P. Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly. Nano Lett. 2011, 11, 2856–2864. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Wu, R.; Xie, Y.; Tan, Q.; Qin, D.; Wu, H.; Huang, W. Recent Progress on Solution-Processed CdTe Nanocrystals Solar Cells. Appl. Sci. 2016, 6, 197. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy Environ. Sci. 2014, 7, 45. [Google Scholar] [CrossRef]
- Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; Arquer, F.P.G.D.; Fan, J.Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 2018, 26, 3–12. [Google Scholar] [CrossRef]
- Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Kotina, I.M.; Tukhkonen, L.M.; Patsekina, G.V.; Shchukarev, A.V.; Gusinskii, G.M. Study of CdTe etching process in alcoholic solutions of bromine. Semicond. Sci. Technol. 1998, 13, 890–894. [Google Scholar] [CrossRef]
- Seymour, F.H.; Kaydanov, V.; Ohno, T.R. Cu and CdCl2 influence on defects detected in CdTe solar cells with admittance spectroscopy. Appl. Phys. Lett. 2005, 87, 153507. [Google Scholar] [CrossRef]
- Rose, D.H.; Hasoon, F.S.; Dhere, R.G.; Albin, D.S.; Ribelin, R.M.; Li, X.S.; Mahathongdy, Y.; Gessert, T.A.; Sheldon, P. Fabrication Procedures and Process Sensitivities for CdS/CdTe Solar Cells. Prog. Photovolt. Res. Appl. 1999, 7, 331–340. [Google Scholar] [CrossRef]
- Panthani, M.G.; Kurley, J.M.; Crisp, R.W.; Dietz, T.C.; Ezzyat, T.; Luther, J.M.; Talapin, D.V. High Efficiency Solution Processed Sintered CdTe Nanocrystal Solar Cells: The Role of Interfaces. Nano Lett. 2014, 14, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tian, Y.; Zhang, Y.; Gao, K.; Lu, K.; Wu, R.; Qin, D.; Wu, H.; Peng, Z.; Hou, L.; et al. Solution processed CdTe/CdSe nanocrystal solar cells with more than 5.5% efficiency by using an inverted device structure. J. Mater. Chem. C. 2015, 3, 4227–4234. [Google Scholar] [CrossRef]
- Xie, Y.; Tan, Q.; Zhang, Z.; Lu, K.; Li, M.; Xu, W.; Qin, D.; Zhang, Y.; Hou, L.; Wu, H. Improving performance in CdTe/CdSe nanocrystals solar cells by using bulk nano-heterojunctions. J. Mater. Chem. C. 2016, 4, 6483. [Google Scholar] [CrossRef]
- Kurley, J.M.; Panthani, M.G.; Crisp, R.W.; Nanayakkara, S.U.; Pach, G.F.; Reese, M.O.; Hudson, M.H.; Dolzhnikov, D.S.; Tanygin, V.; Luther, J.M.; et al. Transparent Ohmic Contacts for Solution-Processed, Ultrathin CdTe Solar Cells. ACS Energy Lett. 2017, 2, 270–278. [Google Scholar] [CrossRef]
- Du, X.; Chen, Z.; Liu, F.; Zeng, Q.; Jin, G.; Li, F.; Yao, D.; Yang, B. Improvement in Open-Circuit Voltage of Thin Film Solar Cells from Aqueous Nanocrystals by Interface Engineering. ACS Appl. Mater. Interfaces 2016, 8, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Hu, L.; Cui, J.; Feng, T.; Du, X.; Jin, G.; Liu, F.; Ji, T.; Li, F.; Zhang, H.; et al. High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination. ACS Appl. Mater. Interfaces 2017, 9, 31345–31351. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Tan, Q.; Liu, S.; Qin, D.; Mo, Y.; Hou, L.; Liu, A.; Wu, H.; Ma, Y. High-efficiency solution-processed CdTe nanocrystal solar cells incorporating a novel crosslinkable conjugated polymer as the hole transport layer. Nano Energy 2018, 46, 150–157. [Google Scholar] [CrossRef]
- Liu, S.; Liu, W.; Heng, J.; Zhou, W.; Chen, Y.; Wen, S.; Qin, D.; Hou, L.; Wang, D.; Xu, H. Solution-Processed Efficient Nanocrystal Solar Cells Based on CdTe and CdS Nanocrystals. Coatings 2018, 8, 26. [Google Scholar] [CrossRef]
- Wen, S.; Li, M.; Yang, J.; Mei, X.; Wu, B.; Liu, X.; Heng, J.; Qin, D.; Hou, L.; Xu, W.; et al. Rationally Controlled Synthesis of CdSexTe1-x Alloy Nanocrystals and Their Application in Efficient Graded Bandgap Solar Cells. Nanomaterials 2017, 7, 380. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tang, J.; Kramer, I.J.; Debnath, R.; Koleilat, G.I.; Wang, X.; Fisher, A.; Li, R.; Brzozowski, L.; Levina, L.; et al. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells. Adv. Mater. 2011, 23, 3832–3837. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, B.; Gao, Y.; Liu, H.; Tian, Y.; Qin, D.; Wu, H.; Huang, W.; Hou, L. Novel Hybrid Ligands for Passivating PbS Colloidal Quantum Dots to Enhance the Performance of Solar Cells. Nano-Micro Lett. 2015, 7, 325–331. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Wen, S.; Liu, S.; Heng, J.; Qin, D.; Hou, L.; Wu, H.; Xu, W.; Huang, W. CdTe Nanocrystal Hetero-Junction Solar Cells with High Open Circuit Voltage Based on Sb-doped TiO2 Electron Acceptor Materials. Nanomaterials 2017, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Galliano, S.; Bella, F.; Gerbaldi, C.; Falco, M.; Viscardi, G.; Grätzel, M.; Barolo, C. Photoanode/Electrolyte Interface Stability in Aqueous Dye-Sensitized Solar Cells. Energy Technol. 2017, 5, 300–311. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Gao, Y.; Qin, D.; Wu, H.; Hou, L.; Huang, W. Enhancement of open-circuit voltage and fill factor in CdTe nanocrystals solar cells by using interface materials. Nanotechnology 2014, 25, 365203. [Google Scholar] [CrossRef] [PubMed]
Annealing Temperature (°C) | CdS Layer Thickness (nm) | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | Rs (Ω·cm−2) | Rsh (Ω·cm−2) |
---|---|---|---|---|---|---|---|
400 | 0 | 0.69 | 12.32 | 31.17 | 2.65 | 96.7 | 149.1 |
330 | 3.74 | 0.71 | 6.88 | 29.07 | 1.42 | 142.7 | 408.0 |
350 | 3.74 | 0.71 | 12.67 | 26.01 | 2.34 | 96.1 | 101.4 |
380 | 3.74 | 0.75 | 14.66 | 30.56 | 3.36 | 101.7 | 228.4 |
390 | 3.74 | 0.82 | 15.61 | 30.62 | 3.92 | 103.0 | 135.8 |
400 | 3.74 | 0.83 | 16.02 | 30.46 | 4.05 | 108.8 | 163.4 |
420 | 3.74 | 0.71 | 9.11 | 24.89 | 1.61 | 148.4 | 157.8 |
400 | 0.78 | 0.73 | 14.56 | 31.24 | 3.32 | 93.0 | 103.9 |
400 | 2.23 | 0.73 | 17.38 | 40.67 | 5.16 | 51.9 | 268.3 |
400 | 9.51 | 0.72 | 11.78 | 20.28 | 1.72 | 126.8 | 54.4 |
Device Architecture | Voc (V) | Jsc (mA/cm2) | FF (%) | AM 1.5G Efficiency (%) | Ref. |
---|---|---|---|---|---|
ITO/CdTe/CdSe/Ca/Al | 0.45 | 13.2 | 49 | 2.9 | [1] |
ITO/CdTe/Al | 0.50 | 4.1 | 51 | 1.1 | [9] |
ITO/CdTe/ZnO/Al | 0.59 | 20.7 | 56 | 6.9 | [12] |
ITO/CdTe/In:ZnO/Al | 0.68 | 25.8 | 71 | 12.3 | [21] |
ITO/CdTe/ZnO/Al | 0.69 | 25.5 | 64.7 | 11.3 | [5] |
ITO/ZnO/CdSe/CdTe/Au | 0.65 | 15.28 | 58.5 | 5.81 | [22] |
ITO/TiO2/CdTe/spiro-OMeTAD/Au | 0.71 | 15.82 | 45.2 | 5.16 | [25] |
ITO/ZnO/CdSe/CdSe:CdTe/CdTe/Au | 0.60 | 21.06 | 49.5 | 6.25 | [23] |
ITO/(N2H5)2CdTe2/CdTe/ZnO:In/Al | 0.73 | 24.6 | 71 | 12.7 | [24] |
FTO/ZnO/Sb:TiO2/CdTe/Au | 0.74 | 11.16 | 30.13 | 2.49 | [32] |
ITO/ZnO/CdS/CdTe/Si-TPA/Au | 0.67 | 20.58 | 52.76 | 7.27 | [27] |
FTO/TiO2/CdS/CdTe/Au | 0.83 | 16.02 | 30.5 | 4.05 | This Work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, X.; Wu, B.; Guo, X.; Liu, X.; Rong, Z.; Liu, S.; Chen, Y.; Qin, D.; Xu, W.; Hou, L.; et al. Efficient CdTe Nanocrystal/TiO2 Hetero-Junction Solar Cells with Open Circuit Voltage Breaking 0.8 V by Incorporating A Thin Layer of CdS Nanocrystal. Nanomaterials 2018, 8, 614. https://doi.org/10.3390/nano8080614
Mei X, Wu B, Guo X, Liu X, Rong Z, Liu S, Chen Y, Qin D, Xu W, Hou L, et al. Efficient CdTe Nanocrystal/TiO2 Hetero-Junction Solar Cells with Open Circuit Voltage Breaking 0.8 V by Incorporating A Thin Layer of CdS Nanocrystal. Nanomaterials. 2018; 8(8):614. https://doi.org/10.3390/nano8080614
Chicago/Turabian StyleMei, Xianglin, Bin Wu, Xiuzhen Guo, Xiaolin Liu, Zhitao Rong, Songwei Liu, Yanru Chen, Donghuan Qin, Wei Xu, Lintao Hou, and et al. 2018. "Efficient CdTe Nanocrystal/TiO2 Hetero-Junction Solar Cells with Open Circuit Voltage Breaking 0.8 V by Incorporating A Thin Layer of CdS Nanocrystal" Nanomaterials 8, no. 8: 614. https://doi.org/10.3390/nano8080614
APA StyleMei, X., Wu, B., Guo, X., Liu, X., Rong, Z., Liu, S., Chen, Y., Qin, D., Xu, W., Hou, L., & Chen, B. (2018). Efficient CdTe Nanocrystal/TiO2 Hetero-Junction Solar Cells with Open Circuit Voltage Breaking 0.8 V by Incorporating A Thin Layer of CdS Nanocrystal. Nanomaterials, 8(8), 614. https://doi.org/10.3390/nano8080614