Next Article in Journal
Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye
Next Article in Special Issue
Antimicrobial Effects of Biogenic Nanoparticles
Previous Article in Journal
Palygorskite Supported AuPd Alloy Nanoparticles as Efficient Nano-Catalysts for the Reduction of Nitroarenes and Dyes at Room Temperature
Previous Article in Special Issue
Magnetic Alginate/Chitosan Nanoparticles for Targeted Delivery of Curcumin into Human Breast Cancer Cells
Open AccessArticle

Colloidal Lignin Particles as Adhesives for Soft Materials

1
Bioproduct Chemistry, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
2
VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT Espoo, Finland
3
Biohybrid Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Espoo, Finland
*
Author to whom correspondence should be addressed.
Nanomaterials 2018, 8(12), 1001; https://doi.org/10.3390/nano8121001
Received: 4 November 2018 / Revised: 25 November 2018 / Accepted: 29 November 2018 / Published: 3 December 2018
(This article belongs to the Special Issue Biomedical Applications of Nanoparticles)
Lignin has interesting functionalities to be exploited in adhesives for medicine, foods and textiles. Nanoparticles (NPs) < 100 nm coated with poly (L-lysine), PL and poly(L-glutamic acid) PGA were prepared from the laccase treated lignin to coat nanocellulose fibrils (CNF) with heat. NPs ca. 300 nm were prepared, β-casein coated and cross-linked with transglutaminase (Tgase) to agglutinate chamois. Size exclusion chromatography (SEC) and Fourier-transform infrared (FTIR) spectroscopy were used to characterize polymerized lignin, while zeta potential and dynamic light scattering (DLS) to ensure coating of colloidal lignin particles (CLPs). Protein adsorption on lignin was studied by quartz crystal microbalance (QCM). Atomic force microscopy (AFM) was exploited to examine interactions between different polymers and to image NPs with transmission electron microscopy (TEM). Tensile testing showed, when using CLPs for the adhesion, the stress improved ca. 10 and strain ca. 6 times compared to unmodified Kraft. For the β-casein NPs, the values were 20 and 8, respectively, and for the β-casein coated CLPs between these two cases. When NPs were dispersed in adhesive formulation, the increased Young’s moduli confirmed significant improvement in the stiffness of the joints over the adhesive alone. Exploitation of lignin in nanoparticulate morphology is a potential method to prepare bionanomaterials for advanced applications. View Full-Text
Keywords: lignin; nanoparticle; protein; nanocellulose; fibril; enzyme; heat; self-assembly; cross-link lignin; nanoparticle; protein; nanocellulose; fibril; enzyme; heat; self-assembly; cross-link
Show Figures

Graphical abstract

MDPI and ACS Style

Mattinen, M.-L.; Riviere, G.; Henn, A.; Nugroho, R.W.N.; Leskinen, T.; Nivala, O.; Valle-Delgado, J.J.; Kostiainen, M.A.; Österberg, M. Colloidal Lignin Particles as Adhesives for Soft Materials. Nanomaterials 2018, 8, 1001.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop