Metasurface Design for Dual-Mode Sensors Based on Broken Symmetry Structure
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lakshmiprabha, K.E.; Govindaraju, C.; Mahendran, G. Broadband plus-shaped metasurface absorber based on graphene for visible and ultraviolet regions. Opt. Quantum Electron. 2022, 54, 774. [Google Scholar] [CrossRef]
- Yang, B.; Zou, Y.; Zhou, K.; Liu, H.T.; Wu, X.H. TiN-based metasurface absorber for efficient solar energy harvesting. Int. J. Therm. Sci. 2023, 192, 108428. [Google Scholar] [CrossRef]
- Babu, W.R.; Kumar, P.R.; Murali, L.; Anushkannan, N.K. Broadband graphene and metasurface-loaded solar thermal absorber design for visible and infrared regions. Opt. Quantum Electron. 2023, 55, 68. [Google Scholar] [CrossRef]
- Abramovich, A.; Azoulay, Y.; Rotshild, D. Real-Time Metasurface Sensor for Monitoring Micropoisons in Aqueous Solutions Based on Gold Nanoparticles and Terahertz Spectroscopy. Sensors 2022, 22, 1279. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiong, L.; Hu, F.R.; Xiang, Y.J.; Dai, X.Y.; Li, G.Y. Ultrasensitive and Tunable Sensor Based on Plasmon-Induced Transparency in a Black Phosphorus Metasurface. Plasmonics 2021, 16, 1071–1077. [Google Scholar] [CrossRef]
- Ni, B.; Chu, G.H.; Xu, Z.Y.; Hou, L.P.; Liu, X.F.; Xiong, J.C. High Q-Factor, High Contrast, and Multi-Band Optical Sensor Based on Plasmonic Square Bracket Dimer Metasurface. Nanomaterials 2024, 14, 421. [Google Scholar] [CrossRef]
- Wu, S. Physical insight into the terahertz polarization modulator by using Smith chart. Phys. Lett. A 2022, 440, 128143. [Google Scholar] [CrossRef]
- He, J.W.; Xie, Z.W.; Wang, S.; Wang, X.K.; Kan, Q.; Zhang, Y. Terahertz polarization modulator based on metasurface. J. Opt. 2015, 17, 105107. [Google Scholar] [CrossRef]
- Ren, C.; Komatsu, K.; Soma, G.; Nakano, Y.; Tanemura, T. Metasurface-based functional optical splitter for a spatially parallelized dual-polarization coherent modulator. Opt. Lett. 2024, 49, 7238–7241. [Google Scholar] [CrossRef]
- Xiao, Y.Z.; Qian, H.L.; Liu, Z.W. Nonlinear Metasurface Based on Giant Optical Kerr Response of Gold Quantum Wells. ACS Photonics 2018, 5, 1654–1659. [Google Scholar] [CrossRef]
- Wang, M.J.; Li, Y.; Tang, Y.T.; Chen, J.F.; Rong, R.; Li, G.X.; Cao, T.; Chen, S.M. Nonlinear Chiroptical Holography with Pancharatnam-Berry Phase Controlled Plasmonic Metasurface. Laser Photonics Rev. 2022, 16, 2200350. [Google Scholar] [CrossRef]
- Lu, Y.X.; Zheng, J.H.; Zhang, F.L.; Guo, Q.Q.; Song, Y.F.; Dong, J.N.; Chen, Y.H. Broadband and weak-dispersion nonlinear response enhancement in the epsilon-near-zero region of a nano-stepped metasurface. Phys. Chem. Chem. Phys. 2024, 26, 23631–23635. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Olifierczuk, M.; Parka, J. Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture. Opt. Express 2018, 26, 2443–2452. [Google Scholar] [CrossRef]
- Zhu, J.F.; Wang, Z.Y.; Lin, S.W.; Jiang, S.; Liu, X.Y.; Guo, S.S. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron. 2020, 150, 111905. [Google Scholar] [CrossRef]
- Asencios, J.; Moro, R.; Luyo, C.; Talledo, A. High sensitive biosensors based on the coupling between surface plasmon polaritons on titanium nitride and a planar waveguide mode. Sensors 2020, 20, 1784. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, A.; Potrebic, M.; Tosic, D. Sensitivity Characterization of Multi-Band THz Metamaterial Sensor for Possible Virus Detection. Electronics 2022, 11, 699. [Google Scholar] [CrossRef]
- Aslinezhad, M. High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 2020, 463, 125411. [Google Scholar] [CrossRef]
- Chao, C.T.C.; Chau, Y.F.C.; Chiang, H.P. Enhancing plasmonic effect in periodic nanometal square prisms with fences and cavities for refractive index and temperature sensing applications. J. Nanopart. Res. 2020, 22, 297. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Li, Z.R.; Cheng, Z.Z. Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Opt. Mater. 2021, 117, 111129. [Google Scholar] [CrossRef]
- Gao, W.K.; Chen, F.; Yang, W.X. Temperature and refractive index sensor based on perfect absorber in InSb double rectangular ring resonator metamaterials. Mater. Today Commun. 2024, 40, 109461. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, Y.; Rehman, A.U.; Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonic Refractive Index and Temperature Sensor Based on Graphene and LiNbO3. Sensors 2022, 22, 7790. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cai, X.; Dai, W.; Luo, J.; Rao, W.; Fu, H. A Double-Layer Structure SPR Sensor With Temperature Self-Compensation and Ultra-Wide Sensing Range for Refractive index Detection. IEEE Sens. J. 2022, 22, 2309–2316. [Google Scholar] [CrossRef]
- Huang, Z.S.; Wang, J.; Jia, W.; Zhang, S.W.; Zhou, C.H. All-dielectric metasurfaces enabled by quasi-BIC for high-Q near-perfect light absorption. Opt. Lett. 2025, 50, 105–108. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Wang, X.F. Refractive Index, Temperature and Pressure Three-Mode Sensing Design Based on Silver-Nitrogen-Graphene Coupled Resonators. IEEE Sens. J. 2024, 24, 8712–8720. [Google Scholar] [CrossRef]
- Wu, T.S.; Liu, Y.M.; Yu, Z.Y.; Ye, H.; Peng, Y.W.; Shu, C.G.; Yang, C.H.; Zhang, W.; He, H.F. A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Opt. Commun. 2015, 339, 1–6. [Google Scholar] [CrossRef]
- Li, L.; Cui, L.; Zong, X.; Liu, Y. Multinarrowband Perfect Absorption With Bound States in the Continuum for Sensing Application. IEEE Sens. J. 2024, 24, 4400–4406. [Google Scholar] [CrossRef]
- Werner, W.S.M.; Glantschnig, K.; Ambrosch-Draxl, C. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data 2009, 38, 1013–1092. [Google Scholar] [CrossRef]
- Yang, H.U.; D’Archangel, J.; Sundheimer, M.L.; Tucker, E.; Boreman, G.D.; Raschke, M.B. Optical dielectric function of silver. Phys. Rev. B 2015, 91, 235137. [Google Scholar] [CrossRef]
- Yang, R.D.; Liu, Y.; Wang, X.F. Metamaterial Broadband Absorber Induced by Synergistic Regulation of Temperature and Electric Field and Its Optical Switching Application. Sensors 2024, 24, 5430. [Google Scholar] [CrossRef]
- Reiter, S.; Han, W.J.; Mai, C.; Spirito, D.; Jose, J.; Zöllner, M.; Fursenko, O.; Schubert, M.A.; Stemmler, I.; Wenger, C.; et al. Titanium nitride plasmonic nanohole arrays for CMOS-compatible integrated refractive index sensing: Influence of layer thickness on optical properties. Plasmonics 2023, 18, 831–843. [Google Scholar] [CrossRef]
- Zhu, X.P.; Shi, H.M.; Zhang, S.; Zheng, M.J.; Dai, P.; Huang, R.M.; Liao, J.; Xue, S.W.; Zhang, J. High figure of merit refractive index sensor derived from the axial length ratio of elliptically polarized light of chiral plasmonic structure arrays. Plasmonics 2023, 18, 2365–2373. [Google Scholar] [CrossRef]
- Zhao, H.N.; Fan, X.Y.; Wei, X.; Li, C.C.; Zhao, T.G.; Fang, W.J.; Niu, H.J.; Bai, C.L.; Kumar, S. Highly sensitive multiple Fano resonances excitation on all-dielectric metastructure. Opt. Rev. 2023, 30, 208–216. [Google Scholar] [CrossRef]
- Zhao, J.J.; Fan, X.Y.; Fang, W.J.; Xiao, W.X.; Sun, F.X.; Li, C.C.; Wei, X.; Tao, J.F.; Wang, Y.L.; Kumar, S. High-Performance Refractive Index and Temperature Sensing Based on Toroidal Dipole in All-Dielectric Metasurface. Sensors 2024, 24, 3943. [Google Scholar] [CrossRef]
- Wang, D.D.; Fan, X.Y.; Fang, W.J.; Du, M.C.; Sun, Q.H.; Niu, H.J.; Li, C.C.; Wei, X.; Li, M.X.; Chen, B.X.; et al. High-Performance All-Dielectric Metasurface for Quadruple Fano Resonance-Induced Biosensing Applications in the Near-Infrared Range. IEEE Sens. J. 2024, 24, 12286–12295. [Google Scholar] [CrossRef]
- Verma, S.K.; Srivastava, S.K. Giant Extra-Ordinary Near Infrared Transmission from Seemingly Opaque Plasmonic Metasurface: Sensing Applications. Plasmonics 2021, 17, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Wekalao, J.; Alsalman, O.; Surve, J.; Parmar, J.; Taya, S.A. Development of surface plasmon resonance sensor with enhanced sensitivity for low refractive index detection. Opt. Quantum Electron. 2023, 55, 101. [Google Scholar] [CrossRef]
- Hu, X.; Hu, Y.C.; Zhang, W.H.; Hu, J.; Li, F.; Su, W.; Wu, H. Compact dual-parameter sensor design based on a photonic crystal nanobeam cavity with chirped slotted annular holes. Appl. Opt. 2023, 62, 8593–8599. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L.; Piramidowicz, R. Hybrid metasurface perfect absorbers for temperature and biosensing applications. Opt. Mater. 2022, 123, 111906. [Google Scholar] [CrossRef]
- Butt, M.A. Plasmonic Sensor System Embedded with Orthogonal Mode Couplers for Simultaneous Monitoring of Temperature and Refractive Index. Plasmonics 2024, 20, 459–469. [Google Scholar] [CrossRef]
Ref. | ST | Sn | Sensing Mode | FOM | Max Q |
---|---|---|---|---|---|
[35] | / | 1435.71 nm/RIU | RI | 80 RIU−1 | / |
[36] | / | 1100 GHz/RIU | RI | 3.832 RIU−1 | / |
[37] | 78.7 pm/°C | 286.82 nm/RIU | RI and Temperature | / | / |
[38] | 180 pm/°C | 355 nm/RIU | RI and Temperature | / | / |
[39] | 336 pm/°C | 737.71 nm/RIU | RI and Temperature | / | 20.5 |
Our work | 216 pm/K | 1030 nm/RIU | RI and Temperature | 0.0033 K−1, 24.6 RIU−1 | 48.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Dai, M.; Zhao, Y.; Wang, X. Metasurface Design for Dual-Mode Sensors Based on Broken Symmetry Structure. Nanomaterials 2025, 15, 687. https://doi.org/10.3390/nano15090687
Yang R, Dai M, Zhao Y, Wang X. Metasurface Design for Dual-Mode Sensors Based on Broken Symmetry Structure. Nanomaterials. 2025; 15(9):687. https://doi.org/10.3390/nano15090687
Chicago/Turabian StyleYang, Rundong, Minjing Dai, Yihao Zhao, and Xiangfu Wang. 2025. "Metasurface Design for Dual-Mode Sensors Based on Broken Symmetry Structure" Nanomaterials 15, no. 9: 687. https://doi.org/10.3390/nano15090687
APA StyleYang, R., Dai, M., Zhao, Y., & Wang, X. (2025). Metasurface Design for Dual-Mode Sensors Based on Broken Symmetry Structure. Nanomaterials, 15(9), 687. https://doi.org/10.3390/nano15090687