Evaluating the Output Performance of the Semiconductor Bridge Through Principal Component Analysis
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. The Firing Test System
2.3. Evaluating the Output Capacity of SCB by Principal Component Analysis
3. Result and Discussion
3.1. Analysis of Characteristic Parameters of the SCB Outburst Process
3.2. Evaluation of SCB Output Capacity by PCA
3.2.1. Principal Component Extraction
3.2.2. Correlation Analysis
3.2.3. Principal Component Composite Score [24,29]
3.3. Verification of PCA Evaluation Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zvulun, E.; Toker, G.; Gurovich, V.T.; Krasik, Y.E. Shockwave generation by a semiconductor bridge operation in water. J. Appl. Phys. 2014, 115, 203301. [Google Scholar] [CrossRef]
- Benson, D.A.; Larsen, M.E.; Renlund, A.M.; Trott, W.M.; Bickes, R.W., Jr. Semiconductor bridge: A plasma generator for the ignition of explosives. J. Appl. Phys. 1987, 62, 1622–1632. [Google Scholar] [CrossRef]
- Rossi, C.; Larangot, B.; Lagrange, D.; Chaalane, A. Final characterizations of MEMS based pyrotechnical microthrusters. Sens. Actuators A Phys. 2005, 121, 508–514. [Google Scholar] [CrossRef]
- Hollander, L.E., Jr. Semiconductive Explosive Igniter. U.S. Patent 3366055A, 30 January 1968. [Google Scholar]
- Wang, J.; Zhou, B.; Ye, S.; Chen, H. Novel electro-explosive device incorporating a planar transient suppression diode. IEEE Electron Device Lett. 2020, 41, 1416–1419. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Q.; Ren, H.; Jiao, Q.; Du, S.; Yang, G. Ignition characteristics of semiconductor bridge based on lead styphnate and lead azide charges under capacitor discharge conditions. Sens. Actuators A Phys. 2016, 241, 27–33. [Google Scholar] [CrossRef]
- Yi, Z.; Cao, Y.; Yuan, J.; Mary, C.; Wan, Z.; Li, Y.; Zhang, C.; Zhang, L.; Zhu, S. Functionalized carbon fibers assembly with Al/Bi2O3: A new strategy for high-reliability ignition. Chem. Eng. J. 2020, 389, 124254. [Google Scholar] [CrossRef]
- Zuo, B.; Zheng, X.; Feng, C.; Yan, S.; Li, F.; Peng, J.; He, C.; Huang, L.; Chen, L. Investigation on heat transfer mechanism of semiconductor bridge ignition based on thermoelectric coupling analysis. J. Mater. Today Commun. 2023, 35, 105820. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X. Investigations of electrical and thermal properties in semiconductor device based on a thermoelectrical model. J. Mater. Sci. 2019, 54, 2392–2405. [Google Scholar] [CrossRef]
- Turcotte, R.; Goldthorp, S.; Badeen, C.M.; Chan, S.K. Hot-wire ignition of AN-based emulsions. Propellants Explos. Pyrotech. 2008, 33, 472–481. [Google Scholar] [CrossRef]
- Kim, J.U.; Park, C.O.; Park, M.; Kim, S.H.; Lee, J.B. Characteristics of semiconductor bridge (SCB) plasma generated in a micro-electro-mechanical system (MEMS). Phys. Lett. A 2002, 305, 413–418. [Google Scholar] [CrossRef]
- Lee, K.N.; Park, M.I.; Choi, S.H.; Park, C.O.; Uhm, H.S.; Kye-Nam, L.; Myung-Il, P.; SungHo, C.; Chong-Ook, P.; Uhm, H.S. Characteristics of plasma generated by polysilicon semiconductor bridge (SCB). Sens. Actuators A Phys. 2002, A96, 252–257. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, Y.; Shen, Y.; Wang, Y.; Ye, Y.; Shen, R. Identifying the enhancement mechanism of Al/MoO3 reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model. J. Defence Technol. 2024, 33, 168–179. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, Y.; Shen, Y.; Wang, C.; Wang, Y.; Ye, Y.; Shen, R. Characteristics of micro energetic semiconductor bridge initiator by depositing Al/MoO3 reactive multilayered films on micro bridge with different bridge size. J. Sens. Actuators A Phys. 2022, 336, 113406. [Google Scholar] [CrossRef]
- Xu, J.; Tai, Y.; Shen, Y.; Xu, W.; Ye, Y.; Shen, R.; Hu, Y. Characteristics of energetic semiconductor bridge initiator based on different stoichiometric ratios of Al/MoO3 reactive multilayer films under capacitor discharge conditions. J. Sens. Actuators A Phys. 2019, 296, 241–248. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, S.; Sun, Q.; Xu, Z. Research of the Characteristics of Semiconductor Bridge (SCB) Plasma. J. Fusion Sci. Technol. 2021, 77, 463–468. [Google Scholar] [CrossRef]
- Xu, J.; Tan, J.; Li, H.; Ye, Y.; Chen, D. Modeling the Heating Dynamics of a Semiconductor Bridge Initiator with Deep Neural Network. J. Micromach. 2021, 13, 1611. [Google Scholar] [CrossRef]
- Sirakov, N.M.; Shahnewaz, T.; Nakhmani, A. Training Data Augmentation with Data Distilled by Principal Component Analysis. J. Electron. 2024, 13, 282. [Google Scholar] [CrossRef]
- Joshua, W.B.; James, B.; Jen, H.; Lynn, C. Using principal component analysis to explore co-variation of vowels. J. Lang. Linguist. Compass 2022, 17, e12479. [Google Scholar]
- Zhang, Y.; Xian, H.; Rao, C. Dispersed fringe cophasing method based on principal component analysis. J. Opt. Lett. 2023, 48, 696–699. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, L.; Gao, W.; Zeng, Q.; Xiao, F.; Liu, Z.; Lei, J. weighted mean temperature model using principal component analysis for Greenland. J. GPS Solut. 2023, 27, 57. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. J. Nat. Rev. Methods Primers 2022, 100, 2. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. J. Anal. Methods 2014, 9, 2812–2831. [Google Scholar] [CrossRef]
- Nakao, E.K.; Levada, A.L. Information theory divergences in principal component analysis. J. Pattern Anal. Appl. 2024, 19, 27. [Google Scholar] [CrossRef]
- Kang, Z.; Liu, H.; Li, J.; Zhu, X.; Tian, L. Self-paced principal component analysis. J. Pattern Recognit. 2023, 142, 109692. [Google Scholar] [CrossRef]
- Fraino, P.E. Using principal component analysis to explore multi-variable relationships. J. Nat. Rev. Earth Environ. 2023, 4, 294. [Google Scholar] [CrossRef]
- Tonin, F.; Tao, Q.; Patrinos, P.; Suykens, J. Deep Kernel Principal Component Analysis for multi-level feature learning. J. Neural Netw. 2024, 170, 578–595. [Google Scholar] [CrossRef]
- Mackiewicz, A.; Ratajczak, W. Principal Components Analysis (PCA). J. Comput. Geosci. 1993, 19, 303–342. [Google Scholar] [CrossRef]
- Al Shalabi, L.; Shaaban, Z.; Kasasbeh, B. Data mining: A preprocessing engine. J. Comput. Sci. 2006, 2, 735–739. [Google Scholar] [CrossRef]
Voltage (V) | Maximum Voltage (V) | Electric Explosion Energy (mJ) | Maximum Current (A) |
---|---|---|---|
10 | 8.9 | 0 | 6.9 |
12 | 12.0 | 0.12 | 8.7 |
14 | 15.2 | 0.003 | 10.6 |
15 | 15.7 | 0.035 | 10.9 |
16 | 17.1 | 0.053 | 11.6 |
17 | 17.5 | 0.06 | 11.7 |
18 | 18.2 | 0.29 | 12.6 |
19 | 19.5 | 0.08 | 13.5 |
20 | 19.9 | 1.45 | 14.5 |
21 | 21.1 | 1.26 | 18.9 |
22 | 22.7 | 2.51 | 22.7 |
23 | 23.3 | 2.35 | 29.5 |
24 | 24.8 | 5.45 | 35.2 |
26 | 25.6 | 8.58 | 39.1 |
28 | 28.0 | 14.30 | 42.6 |
30 | 31.8 | 19.40 | 43.4 |
34 | 32.6 | 29.61 | 45.6 |
Principal Component | Principal Component Extraction | ||
---|---|---|---|
Characteristic Root | Variance Explanation Rate/% | Cumulative Interpretation Rate/% | |
1 | 5.215 | 74.504 | 74.504 |
2 | 1.332 | 19.030 | 93.534 |
3 | 0.355 | 5.072 | 98.606 |
4 | 0.071 | 1.014 | 99.620 |
5 | 0.018 | 0.259 | 99.879 |
6 | 0.008 | 0.121 | 100.000 |
7 | 0.000 | 0.000 | 100.000 |
Characteristic Parameter | PC1 | PC2 | ||
---|---|---|---|---|
Characteristic Root | Load Coefficient | Characteristic Root | Load Coefficient | |
Critical burst time | 5.215 | −0.508 | 1.332 | 0.837 |
Critical burst energy | 0.8 | 0.544 | ||
Total burst time | 0.832 | 0.484 | ||
Total burst energy | 0.947 | −0.007 | ||
Electric explosion energy | 0.941 | −0.031 | ||
maximum voltage | 0.947 | −0.301 | ||
maximum current | 0.973 | −0.095 |
Capacitance (μF) | Resistance (Ω) | Voltage (V) | Critical Burst Time (μs) | Maximum Voltage (V) | Maximum Current (A) | Critical Burst Energy (mJ) |
---|---|---|---|---|---|---|
47 | 0.2 | 21 | 14.0 | 37.7 | 11.66 | 1.94 |
13.3 | 34.6 | 11.66 | 1.81 | |||
12.5 | 42.4 | 8 | 1.69 | |||
0.5 | 23 | 13.9 | 35.6 | 8.3 | 1.71 | |
25 | 12 | 33.6 | 12.6 | 1.82 | ||
11.6 | 31.2 | 13.3 | 1.8 | |||
12.2 | 29.5 | 12.7 | 1.85 | |||
27 | 10.2 | 37.2 | 18.6 | 1.93 | ||
10.7 | 52.1 | 16.6 | 1.98 | |||
9.5 | 35 | 14.3 | 1.74 | |||
94 | 0.5 | 21 | 19.3 | 32.1 | 8.67 | 2.12 |
17.3 | 43.4 | 6.0 | 1.85 | |||
15.2 | 40.2 | 7.34 | 1.65 | |||
23 | 14.1 | 37.4 | 12 | 1.85 | ||
14.7 | 48 | 9.3 | 1.95 | |||
141 | 0.5 | 21 | 16.7 | 37.9 | 8.33 | 1.81 |
17.0 | 35.2 | 7.0 | 1.83 | |||
16.2 | 39.4 | 7.3 | 1.79 | |||
30 | 7.7 | 53.5 | 22.3 | 1.93 | ||
7.5 | 54.9 | 23.3 | 1.92 | |||
8.2 | 44.3 | 23.0 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Da, Y.; Zhang, W.; Li, F.; Xu, J.; Jing, L.; Liu, Q.; Ye, Y.; Shen, R. Evaluating the Output Performance of the Semiconductor Bridge Through Principal Component Analysis. Nanomaterials 2025, 15, 672. https://doi.org/10.3390/nano15090672
Zhang L, Da Y, Zhang W, Li F, Xu J, Jing L, Liu Q, Ye Y, Shen R. Evaluating the Output Performance of the Semiconductor Bridge Through Principal Component Analysis. Nanomaterials. 2025; 15(9):672. https://doi.org/10.3390/nano15090672
Chicago/Turabian StyleZhang, Limei, Yongqi Da, Wei Zhang, Fuwei Li, Jianbing Xu, Li Jing, Qun Liu, Yinghua Ye, and Ruiqi Shen. 2025. "Evaluating the Output Performance of the Semiconductor Bridge Through Principal Component Analysis" Nanomaterials 15, no. 9: 672. https://doi.org/10.3390/nano15090672
APA StyleZhang, L., Da, Y., Zhang, W., Li, F., Xu, J., Jing, L., Liu, Q., Ye, Y., & Shen, R. (2025). Evaluating the Output Performance of the Semiconductor Bridge Through Principal Component Analysis. Nanomaterials, 15(9), 672. https://doi.org/10.3390/nano15090672