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Abstract: The complex burst characteristic parameters of SCB were subjected to dimension-
ality reduction using principal component analysis (PCA), enabling accurate evaluation
of the output performance of SCB. The accuracy and reliability of the PCA method were
also validated. A 100 pF tantalum capacitor was utilized to excite the SCB, while a digital
oscilloscope recorded the characteristic parameters of the SCB explosion. The experimental
results demonstrate that the critical burst time of SCB decreases with the rising voltage,
and the critical burst energy decreases first and then increases with the rising voltage. The
total burst time and total burst energy of SCB all decrease first and then increase with the
rise of voltage. The PCA results indicate that as the voltage increases, the score of SCB
output capacity initially decreases and then increases, reaching its lowest point at 17 V.
The SCB was utilized to ignite lead styphnate (LTNR) under varying circuit conditions;
the characteristic parameters obtained were analyzed using PCA to derive comprehensive
scores. The same dataset was then input into the PCA model for pure SCB to calculate
corresponding comprehensive scores. The consistency between the two sets of scores
validated the accuracy and reliability of PCA in assessing SCB output capability.

Keywords: semiconductor bridge; electric explosion parameter; output capacity; principal
component analysis

1. Introduction

As the initiating element and energy transfer system of weapon systems, initiating
explosive devices have been extensively utilized in various applications such as weapon
launching, ammunition propulsion, and attitude control of micro-nano satellites. Semicon-
ductor bridges (SCBs) [1-4], representing a novel category of pyrotechnic devices, have
garnered significant attention in both military and civilian sectors due to their distinctive
operating principles and broad application potential [5]. Compared with traditional bridge
wire pyrotechnics, SCB pyrotechnics offer enhanced safety and reliability, compact size,
rapid response, and superior control over energy output [6,7].

In the explosion process of SCB, the initial event in the bridge area involves the conver-
sion of electrical energy into thermal energy [8-10]. As the temperature increases, the bridge
material vaporizes and transitions into a plasma state, which enables the SCB to ignite
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the charge through high-temperature plasma [11-13]. Consequently, two coupled energy
conversion modes are involved in the ignition process. These modes operate synergistically
on the ignition agent, complicating the evaluation of SCB’s output capacity. The SCB explo-
sion process encompasses multiple characteristic parameters, such as critical burst time,
critical burst energy, total burst duration, and total burst energy [14-16]. These parameters
exhibit interdependencies, which add layers of complexity to the analysis. Analyzing a
single parameter in isolation often leads to fragmented insights and underutilization of
available data. Reducing the number of indices without careful consideration can result in
a significant loss of valuable information and potentially erroneous conclusions.

In various research and application domains, it is often necessary to observe data
sets containing multiple variables [17,18], collect extensive amounts of data, and ana-
lyze them to identify patterns. Multivariate big data sets provide rich information for
research and applications but also significantly increase the workload associated with
data collection [19-21]. Therefore, it is crucial to develop a method that reduces the num-
ber of indicators to be analyzed while minimizing the loss of information contained in
the original indicators, thereby facilitating comprehensive analysis of the collected data.
Given the inherent correlations among variables, transforming closely related variables
into fewer new variables can be beneficial. These new variables should be uncorrelated,
allowing fewer comprehensive indicators to represent the diverse types of information
contained in each variable. Principal component analysis (PCA) is one such dimensionality
reduction algorithm [22-25].

PCA aims to explain most of the variance in the original data using fewer variables. It
transforms many highly correlated variables into mutually independent or uncorrelated
variables. Typically, a few new variables, known as principal components, which are fewer
than the original variables and can explain most of the variation in the data, are selected to
serve as comprehensive indicators for interpreting the data [26-28].

For the complex explosion process of SCB, PCA can effectively retain most of the origi-
nal information from the SCB explosion process, thereby enabling a more precise evaluation
of the output capacity of SCB. In this paper, a 100 pF tantalum capacitor is utilized to excite
the SCB with a voltage gradient ranging from 10 V to 34 V. A digital oscilloscope captures
the characteristic parameters of the SCB during the burst process, and these parameters are
subsequently summarized and analyzed. To comprehensively evaluate the output capacity
of the SCB, PCA is employed to analyze the collected characteristic parameters. Finally, the
SCB is used to ignite lead styphnate, thereby validating the accuracy and reliability of PCA
in assessing the SCB’s output capacity.

2. Experiment
2.1. Materials

The structure of the SCB features a “double V” shape. Figure la illustrates the
schematic diagram of the SCB, which is encapsulated with a ceramic plug. The pad material
of the SCB is Ti/ Au, while the material in the double V bridge region is phosphorus-doped
polysilicon with a doping concentration of 7 x 10" cm~3. Figure 1b shows the physical
appearance of the SCB. The central bridge region exhibits a V-shaped angle of 150°, with
dimensions of 120 um x 415 pm x 2.5 um, and the resistance of the SCB is 1 Q).
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Figure 1. Structure diagram of SCB: (a) the schematic diagram of SCB; (b) the physical diagram of
SCB and dimensional specifications of the bridge region.

2.2. The Firing Test System

The schematic diagram of the experimental setup for detonating SCB using capacitor
discharge is illustrated in Figure 2. A tantalum capacitor with a capacitance of 100 puF
was employed. The experiment was conducted at voltages ranging from 10 V to 34 V in
increments of 1 V up to 24V, followed by 26 V, 28 V, 30 V, and 34 V, with two parallel exper-
iments performed at each voltage level. During the experiment, the SCB was connected
to the circuit. Switch S2 was closed to charge the capacitor to the desired test voltage,
after which switch S1 was closed to initiate the discharge of the SCB. Simultaneously, an
oscilloscope (44Xs, Teledyne LeCroy Inc., Los Angeles, CA, USA) recorded the current and
voltage waveforms across the SCB.

Energy storage oscilloscope
discharge detonator
S1 S2 ' oEe
e ; sss
v aee
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capacitance
- SCB/ESCB

vy _ |

Voltage probe

Figure 2. Schematic representation of the SCB electrical initiation device.
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2.3. Evaluating the Output Capacity of SCB by Principal Component Analysis

By calculating the covariance matrix of the data matrix, we obtain the eigenvalues
and eigenvectors of this matrix. We then select the matrix composed of the eigenvec-
tors corresponding to the k largest eigenvalues (which represent the largest variances).
This transformation projects the data matrix into a new space, achieving dimensionality
reduction while preserving the most significant features.

The specific process is as follows [29,30]: Let x1, xo, . . ., x, denote p feature quantities in
the SCB burst process, and ¢y, ¢y, . . ., ¢, denote the weights assigned to each feature quantity.
The weighted sum is defined as s = c1xq + cox2 + ... + ¢pX. The goal is to choose appropriate
weights that can effectively differentiate the influence of each feature on SCB. Each voltage
corresponds to a composite score denoted as s1, sy, - . ., 5z, Where 1 is the number of voltages.
If these scores are widely dispersed, it indicates good differentiation. Therefore, we aim to
find weights that maximize the dispersion of s, sy, .. ., s, Statistically, let X1, X», ..., X,
be random variables representing sample observations. We seek c1, ¢, ..., ¢y such that
the variance of ¢1 Xy + c2X3 + ... + ¢ X, is maximized. Since variance measures the de-
gree of variation in the data, maximizing it ensures that we capture the largest variability
among the p variables. To avoid trivial solutions, we impose the constraint that the sum of
squared weights equals one. Under this constraint, the optimal solution is a unit vector in
p-dimensional space, representing a “direction” known as the principal component direc-
tion. One principal component may not suffice to represent the original p variables; thus,
we also seek the second, third, and fourth principal components, ensuring that subsequent
components do not contain information already captured by previous ones.

3. Result and Discussion
3.1. Analysis of Characteristic Parameters of the SCB Outburst Process

As illustrated in Figure 3, among the five key time points, ty marks the initiation of
SCB energization, t; signifies the onset of material melting in the bridge region, f, denotes
the start of SCB vaporization, ¢3 represents the moment when SCB generates plasma and
begins to explode. If the voltage is insufficient at this stage, plasma formation does not
occur, leading to loop disconnection due to bridge vaporization, causing the current to
drop to zero. t; indicates the completion of the SCB action, with the current returning to
zero. The period from f; to t3 is termed the critical burst time (¢;), during which the energy
consumed by SCB is referred to as the critical burst energy (E;). The interval from #; to t
is defined as the total burst time (fs), and the energy expended by SCB during this phase
is designated as the total burst energy (Es). The formulas for calculating E; and E; are
presented below.
£ = [ utat (1)

fo

ty
Es = [ UIdt )

to

Figure 4 shows the characteristic parameters during the SCB explosion process. At an
excitation voltage of 10 V, the bridge area temperature does not reach the melting point,
resulting in a prolonged heating period. The critical burst time initially decreases with the
increase in voltage. Once the voltage is sufficient to cause the SCB to fully burst, the critical
burst time exhibits a slight increase and subsequently remains constant. As the voltage
continues to increase, the total burst time initially decreases and subsequently increases.
This phenomenon can be attributed to the fact that before reaching the critical voltage, the
increased voltage is insufficient to generate plasma in the bridge area but accelerates the
melting or vaporization of the bridge material, leading to circuit interruption. Consequently,
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the total burst time decreases. However, beyond the critical voltage, the extended duration
of plasma formation causes the total explosion time to increase.
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Figure 3. Typical electrical explosion curves and their characteristic points in SCB.

35
450 =
150 (0)
—
-y 400 - s 130
——Eyg J4s —A—E
350 -
42
Ja0 3004
A
{352 _ 250 420 ~
E i y E
RIS - “
{30 200 / {15
A 150 -
P B Py 0
'y N 100 - / 11
A A T ——— |
.\.x . va 17 50 \ ‘e
1 ¢ 1s
A—f/ \ Su-Bog g A “
115 04 Aeilcp kg AR
———— 0

8

T T T T T T T T T T T T T
10 12 14 16 18 20 22 24 26 28 30 32 34 36

8 1‘0 1‘2 1‘4 16 18 20 22 24 26 28 30 3‘2 3‘4 36
voltage (V) voltage (V)

Figure 4. The variation of characteristic parameters of SCB with the increase of voltage during

electrical explosion: (a) critical burst time and critical burst energy; (b) total burst time and total

burst energy.

With the increase in voltage, the energy required for explosion initially decreases
and then increases slightly. At 10 V, the bridge area remains in a channel state without
melting, causing most of the capacitor’s stored energy to act on the SCB, thereby requiring
a relatively large amount of energy for explosion. Before reaching the critical voltage,
increased voltage accelerates the fusion or vaporization of the bridge area, leading to circuit
disconnection and preventing the capacitor’s energy from being fully utilized by the SCB,
thus reducing the energy required for explosion. After surpassing the critical voltage, the
energy required for explosion increases slightly; once the voltage is sufficient for complete
electrical explosion, the required energy stabilizes. Similarly, with increasing voltage, the
total burst energy first decreases and then increases. At 10 V, the unmelted bridge area
ensures that most of the capacitor’s energy is applied to the SCB. Before the critical voltage,
higher voltages cause circuit disconnection, decreasing the total burst energy. After the
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critical voltage, plasma generated by the SCB’s electrical explosion conducts electricity,
closing the circuit and allowing the capacitor’s energy to be released to the SCB again,
resulting in an increase in total burst energy with voltage.

3.2. Evaluation of SCB Output Capacity by PCA
3.2.1. Principal Component Extraction

To more accurately assess the output capacity of SCB, additional characteristic parameters
from the SCB explosion process were identified. Specifically, three new parameters—maximum
voltage, maximum current, and electric explosion energy—were incorporated in Table 1. Electric
explosion energy refers to the energy involved in the gasification and plasma generation
processes of SCB, and its calculation formula is as follows:

Ep=E —E 3)

Table 1. The change of maximum voltage, maximum current and electric explosion energy.

Voltage (V)

Maximum Voltage (V) Electric Explosion Energy (m]) Maximum Current (A)

10
12
14
15
16
17
18
19
20
21
22
23
24
26
28
30
34

8.9 0 6.9

12.0 0.12 8.7

15.2 0.003 10.6
15.7 0.035 10.9
17.1 0.053 11.6
17.5 0.06 11.7
18.2 0.29 12.6
19.5 0.08 13.5
199 1.45 14.5
21.1 1.26 18.9
22.7 2.51 22.7
23.3 2.35 29.5
24.8 5.45 35.2
25.6 8.58 39.1
28.0 14.30 42.6
31.8 19.40 43.4
32.6 29.61 45.6

Since at 10 V voltage, the SCB only converts electrothermal energy without involving
the electrical explosion process, the data under 10 V have been excluded from the analy-
sis. Principal component analysis was conducted on seven characteristic quantities: peak
current, peak voltage, critical burst time, critical burst energy, total burst time, total burst
energy, and electric burst energy. The data are normalized using z-score normalization [30].
Specifically, the mean and standard deviation of the variable are calculated. Each obser-
vation of the variable is then standardized by subtracting the mean and dividing by the
standard deviation; the calculation formula is as follows:

X —X
g

Xs = (4)

The principal components of the SCB feature parameters were computed to extract
the eigenvalues and variance contribution rates, as presented in Figure 5.
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Figure 5. Lithotripsy: Explained variance ratio for each principal component.

Table 2 presents the extracted eigenvalues of principal components and their corre-
sponding variance explanation rates. To visually assess the variance explanation rates of
the principal components, a scree plot is constructed for the principal components. As
can be seen from Figure 5, Principal Component 1 (PC1) accounts for 74.5% of the original
information, while Principal Component 2 (PC2) accounts for 19.03%. PC1 and PC2 can
already explain about 93.5% of the original information, which indicates that PC1 and PC2
collectively retain the majority of the original information, so PC1 and PC2 are chosen to
replace the original information.

Table 2. Characteristic roots of principal components and variance explanation rate.

Principal Component

Principal Component Extraction

Characteristic Root  Variance Explanation Rate/% Cumulative Interpretation Rate/%

NGk WN -

5.215 74.504 74.504
1.332 19.030 93.534
0.355 5.072 98.606
0.071 1.014 99.620
0.018 0.259 99.879
0.008 0.121 100.000
0.000 0.000 100.000

3.2.2. Correlation Analysis

The load coefficient signifies the correlation coefficient between PC1 and PC2 with
the original standardized data. A load factor exceeding 0.5 indicates a strong association,
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where positive values denote a positive correlation and negative values indicate a negative
correlation. As shown in Table 3, PC1 exhibits a strong positive correlation with critical
electrical burst energy, total explosion time, total explosion energy, electric burst energy,
critical explosion voltage, and peak current, while it shows a strong negative correlation
with explosion delay time. Meanwhile, PC2 demonstrates a strong positive correlation
with explosion delay time and critical electrical burst energy, a slight positive correlation
with total explosion time, and slight negative correlations with other factors.

Table 3. The load coefficient of the principal component.

PC1 PC2
Characteristic Parameter
Characteristic Root  Load Coefficient  Characteristic Root  Load Coefficient

Critical burst time —0.508 0.837

Critical burst energy 0.8 0.544

Total burst time 0.832 0.484
Total burst energy 5.215 0.947 1.332 —0.007
Electric explosion energy 0.941 —0.031
maximum voltage 0.947 —0.301
maximum current 0.973 —0.095

3.2.3. Principal Component Composite Score [24,29]

To determine the comprehensive score for each voltage level, we begin by calculating
the individual component scores.
Se = Ce x 54 )

In the Formula (5), S; represents the score of the principal component, C;, represents
the linear combination coefficient, and S; represents standardized data.

The linear combination coefficient (Cj.) is obtained by dividing the loading coefficient
by the square root of the corresponding eigenvalue.

Clc - lC/\/7j (6)

where [ represents the load coefficient and r represents the characteristic root of the
corresponding principal component.
The following principal component score calculation formula is obtained:

Se1 = —0.222t; + 0.350E; + 0.364t5 + 0.415Es + 0.412E, + 0.414V), + 0.426C,,  (7)

Se2 = 0.725t4 + 0.A71E + 0.420t; — 0.006Es — 0.027E,, — 0.261V;, — 0.482C,,  (8)

where 5.1 and Sc» denote the scores of PC1 and PC2, respectively, while V;;, and C;,
represent the peak voltage and current.

After obtaining the principal component scores, the comprehensive score is calculated
by multiplying each principal component score by its corresponding variance contribution
rate. The weighted sum of these products is then divided by the cumulative variance

contribution rate.
S = (74.504S5.1 + 19.030S.,)/93.534 9)

where S represents the comprehensive score, a higher comprehensive score indicates
superior output capacity of SCB. As illustrated in Figure 6, the comprehensive score
exhibits a trend of initially decreasing and subsequently increasing as the voltage rises
from 10 V to 34 V, with minor fluctuations observed in the critical voltage region. The score
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reaches its lowest point at 17 V, indicating that this voltage corresponds to the weakest
output capacity of the SCB.

44 ]
N / l/
o
2 -
I/
2 /
21 -
& /
n
0 f/
14 m
'\ ./
2 ./.\./-
-3 T T T T T T
12 16 20 24 28 32
Voltage (V)

Figure 6. The comprehensive score of SCB output capacity under different voltages.

3.3. Verification of PCA Evaluation Method

To verify the accuracy of the PCA method in evaluating the output capacity of SCB,
the test system as shown in Figure 2 was utilized to trigger LINR under various conditions,
including different voltages, capacitors, and line resistances. The characteristic burst
parameters of SCB were collected under these conditions. Due to the presence of the agent,
only critical burst time, critical burst energy, maximum voltage, and maximum current
could be measured (Table 4). The four characteristic parameters were derived through PCA,
and the composite scores under various testing conditions were subsequently obtained.

Table 4. Electrical explosion parameters of SCB under different circuit conditions.

Critical Burst Maximum Maximum Critical Burst

Capacitance (uF)  Resistance ((2)  Voltage (V) Time (uis) Voltage (V)  Current (A)  Energy (m])

14.0 37.7 11.66 1.94
0.2 21 133 34.6 11.66 1.81

125 24 8 1.69

23 13.9 35.6 8.3 1.71

o 12 33.6 126 1.82
25 11.6 31.2 133 1.8

0.5 122 29.5 12.7 1.85

102 37.2 18.6 1.93

27 10.7 52.1 16.6 1.98

9.5 35 14.3 1.74

19.3 32.1 8.67 2.12

21 17.3 434 6.0 1.85

94 05 15.2 40.2 7.34 1.65
” 14.1 374 12 1.85

14.7 48 9.3 1.95

16.7 37.9 8.33 1.81

21 17.0 35.2 7.0 1.83

16.2 39.4 7.3 1.79

1 0 7.7 53.5 223 1.93
30 7.5 54.9 23.3 1.92

8.2 44.3 23.0 22
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To align with the characteristic parameters of the SCB that excited LTNR, three analyti-
cal factors (total burst time, total burst energy, and electric explosion energy) were excluded
from Section 3.2. Consequently, a revised comprehensive score calculation model for SCB
(non-igniting LTNR) was established. The SCB characteristic parameters of ignition LTNR
were incorporated into the model for computation.

By comparing the two data plots, it is evident from Figure 7 that both exhibit a
similar change trend with minimal discrepancy between them. By modifying the circuit
conditions, it is evident that the PCA model of SCB alone aligns well with the PCA model
of SCB igniting LTNR, irrespective of alterations in capacitance, resistance, or voltage. This
suggests that the PCA model demonstrates higher accuracy in predicting the SCB output
ability score.

( a) —=— SCB-LTNR model
—&— SCB model

Voltage 21V Voltage 23 V Voltage 25V
1.0 4 Resi 0.2Q Resi: 05Q i 0.5Q

0.5

2
S Resistance 0.5 Q'
@»n
0.0 47pF
-0.5
1.0
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Serial number
—=— SCB-LTNR model
(b) 0.5 —&— SCB model
Voltage 21V Voltage 23V
Resistance 0.5 Q Resistance 0.5 Q
@
1
S
3 94pF
T T T T T
1 2 3 4 5
Serial number
257 —=—SCB-LTNR model
(c) —&— SCB model
2.0 4
1.5
Voltage 21V Voltage 30V
o 104 Resistance 0.5 Q Resistance 0.5 Q
£
=3
@ 05 141 pF
0.0 -
0.5
1.0

T
1 2 3 4 5 6
Serial number

Figure 7. Comparison of the scores of the two models under different circuit conditions: (a) 47 uF;
(b) 94 uF; (c) 141 uF.
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4. Conclusions

In this paper, a 100 pF tantalum capacitor is employed to stimulate the SCB under a
steep voltage gradient. The changes in the SCB’s characteristic parameters are recorded
using a digital oscilloscope, and the trends of critical burst time, critical burst energy, total
burst time, and total burst energy are summarized and analyzed. Principal component
analysis (PCA) is utilized to comprehensively evaluate the explosion characteristics of
the SCB, thereby assessing its output capacity. The PCA model of the SCB is compared
with that of LTNR triggered by the SCB, verifying the accuracy and reliability of the SCB
output capacity evaluation through PCA. The main conclusions derived from this study
are as follows:

The critical burst time decreases as voltage increases and remains relatively constant
once the voltage reaches the level required for a complete electrical burst. Prior to reaching
the critical voltage, the critical burst energy decreases with increasing voltage; however,
after surpassing the critical voltage, it exhibits a slight increase with further voltage in-
crements. Once the SCB achieves complete detonation, the critical burst energy remains
largely unchanged.

The total burst time and total burst energy both decrease with increasing voltage
before the critical voltage is reached, but they increase with voltage increments after the
critical voltage is surpassed.

The output capacity of SCB was assessed by synthesizing the characteristic parameters
of the SCB explosion process using principal component analysis. The output capacity
initially decreased and subsequently increased as the voltage was raised.

The PCA model of SCB is compared with that of LTNR-fired SCB under various
circuit conditions. The close agreement between the two models validates the accuracy and
reliability of using PCA to assess the output capacity of SCB. PCA can effectively leverage
most of the information from the SCB outbreak process to evaluate the output capacity
of SCB. However, as a statistical method, PCA benefits greatly from larger datasets for
more robust analysis. The limitation of this work is the insufficient number of experiments,
although collecting thousands of experimental data points would require collaboration
among multiple working groups. The accuracy of the PCA method should be further
validated using additional energetic materials.
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