Investigating Floating-Gate Topology Influence on van der Waals Memory Performance
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Shulaker, M.M.; Hills, G.; Park, R.S.; Howe, R.T.; Saraswat, K.; Wong, H.-S.P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78. [Google Scholar] [CrossRef]
- Intel Corporation. Micron and Intel Unveil New 3D NAND Flash Memory; Intel Newsroom: Santa Clara, CA, USA, 2015; Available online: https://www.intc.com/news-events/press-releases/detail/349/micron-and-intel-unveil-new-3d-nand-flash-memory (accessed on 10 January 2025).
- ITRS, International Technology Roadmap for Semiconductors. Flash Memory Technology Requirements (PIDS8a). 2012. Available online: https://irds.ieee.org (accessed on 10 January 2025).
- Li, M.; Lin, C.-Y.; Chang, Y.-M.; Yang, S.-H.; Lee, M.-P.; Chen, C.-F.; Lee, K.-C.; Yang, F.-S.; Lin, Y.-C.; Ueno, K.; et al. Facile and Reversible Carrier-Type Manipulation of Layered MoTe2 Toward Long-Term Stable Electronics. ACS Appl. Mater. Interfaces 2020, 12, 42918–42924. [Google Scholar] [CrossRef]
- Lee, M.-P.; Gao, C.; Tsai, M.-Y.; Lin, C.-Y.; Yang, F.-S.; Sung, H.-Y.; Zhang, C.; Li, W.; Li, J.; Zhang, J.; et al. Silicon–van der Waals heterointegration for CMOS-compatible logic-in-memory design. Sci. Adv. 2023, 9, eadk1597. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, H.; Wang, S.; Liu, Q.; Jiang, Y.-G.; Zhang, D.W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Cheng, N.; Li, M.; Zhou, B.; Bian, C.; Wei, Y.; Wang, X.; Jiang, H.; Bao, L.; Lin, Y.; et al. Transition-Metal Substitution-Induced Lattice Strain and Electrical Polarity Reversal in Monolayer WS2. ACS Appl. Mater. Interfaces 2020, 12, 18650–18659. [Google Scholar] [CrossRef]
- Guo, X.; Chen, H.; Bian, J.; Liao, F.; Ma, J.; Zhang, S.; Zhang, X.; Zhu, J.; Luo, C.; Zhang, Z.; et al. Stacking Monolayers at Will: A Scalable Device Optimization Strategy for Two-Dimensional Semiconductors. Nano Res. 2022, 15, 6620–6627. [Google Scholar] [CrossRef]
- Liu, C.; Yan, X.; Song, X.; Ding, S.; Zhang, D.W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410. [Google Scholar] [CrossRef]
- Zha, J.; Shi, S.; Chaturvedi, A.; Huang, H.; Yang, P.; Yao, Y.; Li, S.; Xia, Y.; Zhang, Z.; Wang, W.; et al. Electronic/Optoelectronic Memory Device Enabled by Tellurium-based 2D van der Waals Heterostructure for in-Sensor Reservoir Computing at the Optical Communication Band. Adv. Mater. 2023, 35, 2211598. [Google Scholar] [CrossRef]
- Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G.; Sun, Y.; Yang, Y.; Ren, T.-L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264. [Google Scholar] [CrossRef]
- Wei, T.; Han, Z.; Zhong, X.; Xiao, Q.; Liu, T.; Xiang, D. Two dimensional semiconducting materials for ultimately scaled transistors. iScience 2022, 25, 105160. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Khandelwal, S.; Banerjee, K. The future transistors. Nature 2023, 620, 501–515. [Google Scholar] [CrossRef]
- Vu, T.T.H.; Park, M.H.; Phan, T.L.; Park, H.J.; Vu, V.T.; Kim, H.J.; Aggarwal, P.; Won, U.Y.; Li, H.; Kim, W.K.; et al. Wafer-scale floating gate memristor array using 2D-graphene/3D-Al2O3/ZnO heterostructures for neuromorphic system. Adv. Mater. 2025, 689, 162460. [Google Scholar] [CrossRef]
- Zubair, M.; Dong, Y.; Cai, B.; Fu, X.; Wang, H.; Li, T.; Wang, J.; Liu, S.; Xia, M.; Zhao, Q.; et al. Floating gate photo-memory devices based on van der Waals heterostructures for neuromorphic image recognition. Appl. Phys. Lett. 2023, 123, 051102. [Google Scholar] [CrossRef]
- Gwon, O.H.; Kim, J.Y.; Kim, H.S.; Kang, S.; Byun, H.R.; Park, M.; Lee, D.S.; Kim, Y.; Ahn, S.; Kim, J.; et al. Systematic design and demonstration of multi-bit generation in layered materials heterostructures floating-gate memory. Adv. Funct. Mater. 2021, 31, 2105472. [Google Scholar] [CrossRef]
- Muralidharan, G.; Bhat, N.; Santhanam, V. Scalable Processes for Fabricating Non-Volatile Memory Devices Using Self-Assembled 2D Arrays of Gold Nanoparticles as Charge Storage Nodes. Nanoscale 2011, 3, 4575–4579. [Google Scholar] [CrossRef] [PubMed]
- Molina-Mendoza, A.J.; Paur, M.; Mueller, T. Nonvolatile Programmable WSe2 Photodetector. Adv. Opt. Mater. 2020, 8, 2000417. [Google Scholar] [CrossRef]
- Cho, H.; Lee, D.; Ko, K.; Lin, D.-Y.; Lee, H.; Park, S.; Park, B.; Jang, B.C.; Lim, D.-H.; Suh, J. Double-floating-gate van der Waals transistor for high-precision synaptic operations. ACS Nano 2023, 17, 7384–7393. [Google Scholar] [CrossRef]
- Kim, S.H.; Yi, S.-G.; Park, M.U.; Lee, C.; Kim, M.; Yoo, K.-H. Multilevel MoS2 optical memory with photoresponsive top floating gates. ACS Appl. Mater. Interfaces 2019, 11, 25306–25312. [Google Scholar] [CrossRef]
- Rodder, M.A.; Vasishta, S.; Dodabalapur, A. Double-gate MoS2 field-effect transistor with a multilayer graphene floating gate: A versatile device for logic, memory, and synaptic applications. ACS Appl. Mater. Interfaces 2020, 12, 33926–33933. [Google Scholar] [CrossRef]
- Sasaki, T.; Ueno, K.; Taniguchi, T.; Watanabe, K.; Nishimura, T.; Nagashio, K. Material and device structure designs for 2D memory devices based on the floating gate voltage trajectory. ACS Nano 2021, 15, 6658–6668. [Google Scholar] [CrossRef]
- Tong, L.; Wan, J.; Xiao, K.; Liu, J.; Ma, J.; Guo, X.; Zhou, L.; Chen, X.; Xia, Y.; Dai, S.; et al. Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 2022, 6, 37–44. [Google Scholar] [CrossRef]
- Hong, A.J.; Song, E.B.; Yu, H.S.; Allen, M.J.; Kim, J.; Fowler, J.D.; Wassei, J.K.; Park, Y.; Wang, Y.; Zou, J.; et al. Graphene flash memory. ACS Nano 2011, 5, 7812–7817. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Appenzeller, J. Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett. 2009, 9, 2973–2977. [Google Scholar] [CrossRef] [PubMed]
- Raghunathan, S.; Krishnamohan, T.; Parat, K.; Saraswat, K.C. Investigation of ballistic current in scaled Floating-gate NAND FLASH and a solution. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 819–822. [Google Scholar] [CrossRef]
- Dastgeer, G.; Nisar, S.; Rasheed, A.; Akbar, K.; Chavan, V.D.; Kim, D.-K.; Wabaidur, S.M.; Zulfiqar, M.W.; Eom, J. Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations. Nano Energy 2024, 119, 109106. [Google Scholar] [CrossRef]
- Gadelha, A.C.; Cadore, A.R.; Watanabe, K.; Taniguchi, T.; de Paula, A.M.; Malard, L.M.; Lacerda, R.G.; Campos, L.C. Gate-tunable non-volatile photomemory effect in MoS2 transistors. 2D Mater. 2019, 6, 025036. [Google Scholar] [CrossRef]
- Schranghamer, T.F.; Oberoi, A.; Das, S. Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 2023, 14, 3456. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C.; Jiang, L.; Li, J.; Ding, Y.; Wang, S.; Jiang, Y.-G.; Sun, Y.-B.; Wang, J.; Chen, S.; et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 2021, 16, 874–881. [Google Scholar] [CrossRef]
- Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S.; Colombo, L.; Bonaccorso, F.; Samorì, P. Nonvolatile Memories Based on Graphene and Related 2D Materials. Adv. Mater. 2019, 31, e1806663. [Google Scholar] [CrossRef]
- Belotcerkovtceva, D.; Datt, G.; Nameirakpam, H.; Aitkulova, A.; Suntornwipat, N.; Majdi, S.; Isberg, J.; Kamalakar, M.V. Extreme current density and breakdown mechanism in graphene on diamond substrate. Carbon 2025, 220, 120108. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Kapitanova, O.; Kononenko, O.; Koveshnikov, S.; Korepanov, V.; Roshchupkin, D. Large-scalable graphene oxide films with resistive switching for non-volatile memory applications. Mater. Sci. Eng. B 2020, 262, 114345. [Google Scholar] [CrossRef]
- Shinde, P.V.; Hussain, M.; Moretti, E.; Vomiero, A. Advances in two-dimensional molybdenum ditelluride (MoTe2): A comprehensive review of properties, preparation methods, and applications. SusMat 2024, 4, e236. [Google Scholar] [CrossRef]
- Kononenko, O.; Brzhezinskaya, M.; Zotov, A.; Korepanov, V.; Levashov, V.; Matveev, V.; Roshchupkin, D. Influence of numerous Moiré superlattices on transport properties of twisted multilayer graphene. Carbon 2022, 194, 52–61. [Google Scholar] [CrossRef]
- Huang, X.; Liu, C.; Tang, Z.; Zeng, S.; Wang, S.; Zhou, P. An ultrafast bipolar flash memory for self-activated in-memory computing. Nat. Nanotechnol. 2023, 18, 486–492. [Google Scholar] [CrossRef]
- Wang, J.; Zou, X.; Xiao, X.; Xu, L.; Wang, C.; Jiang, C.; Ho, J.C.; Wang, T.; Li, J.; Liao, L. Floating Gate Memory-Based Monolayer MoS2 Transistor with Metal Nanocrystals Embedded in the Gate Dielectrics. Small 2014, 11, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ling, H.; Bao, Y.; Yang, M.; Yang, Y.; Hussain, M.; Wang, H.; Zhang, L.; Xie, L.; Yi, M.; et al. A Centimeter-Scale Inorganic Nanoparticle Superlattice Monolayer with Non-Close-Packing and its High Performance in Memory Devices. Adv. Mater. 2018, 30, 1800595. [Google Scholar] [CrossRef]
- Sasaki, T.; Ueno, K.; Taniguchi, T.; Watanabe, K.; Nishimura, T.; Nagashio, K. Understanding the Memory Window Overestimation of 2D Materials Based Floating Gate Type Memory Devices by Measuring Floating Gate Voltage. Small 2020, 16, e2004907. [Google Scholar] [CrossRef]
- Cao, W.; Kang, J.; Liu, W.; Banerjee, K. A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect. IEEE Trans. Electron Devices 2014, 61, 4282–4290. [Google Scholar] [CrossRef]
- Hafsi, B.; Boubaker, A.; Ismaïl, N.; Kalboussi, A.; Lmimouni, K. TCAD Simulations of graphene field-effect transistors based on the quantum capacitance effect. J. Korean Phys. Soc. 2015, 67, 1201–1207. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; Van Haesendonck, C. The work function of few-layer graphene. J. Phys. Condens. Matter 2016, 29, 035003. [Google Scholar] [CrossRef]
- Nathawat, J.; Zhao, M.; Kwan, C.-P.; Yin, S.; Arabchigavkani, N.; Randle, M.; Ramamoorthy, H.; He, G.; Somphonsane, R.; Matsumoto, N.; et al. Transient Response of h-BN-Encapsulated Graphene Transistors: Signatures of Self-Heating and Hot-Carrier Trapping. ACS Omega 2019, 4, 4082–4090. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Zhang, J.; Ding, Z.; Jiang, H.; Yan, Y.; Gu, D.; Li, W.; Yi, M.; Huang, F.; Chen, S.; et al. Ultrathin Metal–Organic Framework Nanosheets as Nano-Floating-Gate for High Performance Transistor Memory Device. Adv. Funct. Mater. 2021, 32, 2110784. [Google Scholar] [CrossRef]
- Kim, T.; Kang, D.; Lee, Y.; Hong, S.; Shin, H.G.; Bae, H.; Yi, Y.; Kim, K.; Im, S. 2D TMD Channel Transistors with ZnO Nanowire Gate for Extended Nonvolatile Memory Applications. Adv. Funct. Mater. 2020, 30, 2004140. [Google Scholar] [CrossRef]
- Gong, F.; Luo, W.; Wang, J.; Wang, P.; Fang, H.; Zheng, D.; Guo, N.; Wang, J.; Luo, M.; Ho, J.C.; et al. High-Sensitivity Floating-Gate Phototransistors Based on WS2 and MoS2. Adv. Funct. Mater. 2016, 26, 6084–6090. [Google Scholar] [CrossRef]
- Gong, X.; Zhou, Y.; Xia, J.; Zhang, L.; Zhang, L.; Yin, L.-J.; Hu, Y.; Qin, Z.; Tian, Y. Tunable non-volatile memories based on 2D InSe/h-BN/GaSe heterostructures towards potential multifunctionality. Nanoscale 2023, 15, 14448–14457. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, C.; Deng, Y.; Duan, R.; Chen, J.; Zeng, Q.; Zhou, J.; Fu, Q.; You, L.; Liu, S.; et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 2021, 12, 1109. [Google Scholar] [CrossRef]
- Wen, J.; Tang, W.; Kang, Z.; Liao, Q.; Hong, M.; Du, J.; Zhang, X.; Yu, H.; Si, H.; Zhang, Z.; et al. Direct Charge Trapping Multilevel Memory with Graphdiyne/MoS2 Van der Waals Heterostructure. Adv. Sci. 2021, 8, 2101417. [Google Scholar] [CrossRef]
- Zha, J.; Xia, Y.; Shi, S.; Huang, H.; Li, S.; Qian, C.; Wang, H.; Yang, P.; Zhang, Z.; Meng, Y.; et al. A 2D Heterostructure-Based Multifunctional Floating Gate Memory Device for Multimodal Reservoir Computing. Adv. Mater. 2023, 36, e2308502. [Google Scholar] [CrossRef]
Material | Dopant Thickness | Value |
---|---|---|
MoS2 | Eg (eV) | 1.9 |
εr | 4.2 | |
χ (eV) | 4.7 | |
μn (cm2/(V·s)) | 200 | |
μp (cm2/(V·s)) | 76 | |
Gr | Eg (eV) | 0 |
εr | 25 | |
χ (eV) | 4 | |
gc (E) | 3 × 1017 | |
gv (E) | 3 × 1017 | |
μn (cm2/(V·s)) | 1 × 104 | |
μp (cm2/(V·s)) | 1 × 104 | |
h-BN | Eg (eV) | 4 |
εr | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Qin, Y.; Gao, C.; Fang, J.; Zou, Y.; Li, M.; Zhang, J. Investigating Floating-Gate Topology Influence on van der Waals Memory Performance. Nanomaterials 2025, 15, 666. https://doi.org/10.3390/nano15090666
Zheng H, Qin Y, Gao C, Fang J, Zou Y, Li M, Zhang J. Investigating Floating-Gate Topology Influence on van der Waals Memory Performance. Nanomaterials. 2025; 15(9):666. https://doi.org/10.3390/nano15090666
Chicago/Turabian StyleZheng, Hao, Yusang Qin, Caifang Gao, Junyi Fang, Yifeng Zou, Mengjiao Li, and Jianhua Zhang. 2025. "Investigating Floating-Gate Topology Influence on van der Waals Memory Performance" Nanomaterials 15, no. 9: 666. https://doi.org/10.3390/nano15090666
APA StyleZheng, H., Qin, Y., Gao, C., Fang, J., Zou, Y., Li, M., & Zhang, J. (2025). Investigating Floating-Gate Topology Influence on van der Waals Memory Performance. Nanomaterials, 15(9), 666. https://doi.org/10.3390/nano15090666