A Mechanistic Approach Toward Enhanced Remediation Potential of Thiacloprid by Zero-Valent Iron/Biochar Supplemented with Organic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Materials
2.2.1. Pinewood Biochar (PBC) Synthesis
2.2.2. ZVI/PBC Composite Fabrication
2.2.3. ZVI Preparation
2.3. Characterization
2.4. Removal Experiment of THI
3. Results and Discussion
3.1. Characterization
3.2. THI Remediation Potential
3.3. Solution Phase Dissolved Cl− Concentration Dynamics
3.4. Mechanisms of THI Degradation
3.5. Future Research and Challenges
4. Conclusions
- Optimizing material synthesis protocols, such as low-temperature pyrolysis for biochar or green reductants (e.g., plant extracts) for ZVI production, to enhance cost-effectiveness and scalability.
- Expanding application scenarios by evaluating system performance under diverse environmental conditions (e.g., saline soils and organic-rich wastewater) and co-contaminant matrices (e.g., heavy metals and microplastics).
- Developing real-time monitoring platforms integrating in situ spectroscopy (e.g., Raman) or artificial intelligence (AI)-driven sensor networks to track degradation intermediates and catalyst stability dynamically.
- Engineering recoverable composites, such as magnetic ZVI/PBC hybrids, to minimize secondary pollution and facilitate large-scale deployment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Cao, N.; Gui, W.; Ma, Q. Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection. Talanta 2018, 183, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Abramović, B.F.; Banić, N.D.; Šojić, D.V. Degradation of thiacloprid in aqueous solution by UV and UV/H2O2 treatments. Chemosphere 2010, 81, 114–119. [Google Scholar] [CrossRef]
- Alsafran, M.; Rizwan, M.; Usman, K.; Saleem, M.H.; Al Jabri, H. Neonicotinoid insecticides in the environment: A critical review of their distribution, transport, fate, and toxic effects. J. Environ. Chem. Eng. 2022, 10, 108485. [Google Scholar] [CrossRef]
- Han, W.; Tian, Y.; Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere 2018, 192, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ren, C.; Sun, H.; Min, L. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci. Total Environ. 2018, 615, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Stara, A.; Pagano, M.; Albano, M.; Savoca, S.; Di Bella, G.; Albergamo, A.; Koutkova, Z.; Sandova, M.; Velisek, J.; Fabrello, J.; et al. Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. Environ. Pollut. 2021, 289, 117892. [Google Scholar] [CrossRef]
- Li, A.; Yin, L.; Ke, L.; Diao, Q.-Y.; Wu, Y.; Dai, P.; Liu, Y.-J. Thiacloprid impairs honeybee worker learning and memory with inducing neuronal apoptosis and downregulating memory-related genes. Sci. Total Environ. 2023, 885, 163820. [Google Scholar] [CrossRef]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef]
- Ezzatahmadi, N.; Ayoko, G.A.; Millar, G.J.; Speight, R.; Yan, C.; Li, J.; Li, S.; Zhu, J.; Xi, Y. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chem. Eng. J. 2017, 312, 336–350. [Google Scholar] [CrossRef]
- Pasinszki, T.; Krebsz, M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. Nanomaterials 2020, 10, 917. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Z.; Wang, H.; Yang, H.; Wen, T.; Wang, S.; Hu, B.; Wang, X. Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci. Total Environ. 2021, 792, 148546. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Zhang, X.Y.; Sun, Y.K.; Liang, L.P.; Pan, B.C.; Zhang, W.M.; Guan, X.H. Advances in Sulfidation of Zerovalent Iron for Water Decontamination. Environ. Sci. Technol. 2017, 51, 13533–13544. [Google Scholar] [CrossRef]
- Boddula, R.; Xie, G.; Guo, B.; Gong, J.R. Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes. Chin. J. Catal. 2021, 42, 1387–1394. [Google Scholar] [CrossRef]
- Ahmad, S.; Liu, X.; Tang, J.; Zhang, S. Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants. Chem. Eng. J. 2022, 431, 133187. [Google Scholar] [CrossRef]
- Gong, Y.; Gai, L.; Tang, J.; Fu, J.; Wang, Q.; Zeng, E.Y. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Sci. Total Environ. 2017, 595, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.-F.; Ling, L.-L.; Chen, W.-J.; Liu, W.-J.; Li, D.-C.; Jiang, H. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors. Chem. Eng. J. 2019, 359, 572–583. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Zdarta, J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. Chemosphere 2024, 358, 142101. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, M.; Zhou, M.; Li, Y.C.; Wang, J.; Gao, B.; Sato, S.; Feng, K.; Yin, W.; Igalavithana, A.D.; et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. J. Hazard. Mater. 2019, 373, 820–834. [Google Scholar] [CrossRef]
- Zou, Z.; Zhao, E.; Yu, P.; Jing, J.; Li, Y.; Li, B.; Wu, J. Simultaneous remediation of three neonicotinoids in soil using nanoscale zero-valent iron-activated persulfate process: Performance, effect of process parameters, and mechanisms. Process. Saf. Environ. Prot. 2022, 167, 308–321. [Google Scholar] [CrossRef]
- Cui, S.; Lv, J.; Hough, R.; Fu, Q.; An, L.; Zhang, Z.; Ke, Y.; Liu, Z.; Li, Y.-F. Recent advances and prospects of neonicotinoid insecticides removal from aquatic environments using biochar: Adsorption and degradation mechanisms. Sci. Total Environ. 2024, 939, 173509. [Google Scholar] [CrossRef]
- Boddula, R.; Guo, B.; Ali, A.; Xie, G.; Dai, Y.; Zhao, C.; Wei, Y.; Jan, S.U.; Gong, J.R. Synergetic Effects of Dual Electrocatalysts for High-Performance Solar-Driven Water Oxidation. ACS Appl. Energy Mater. 2019, 2, 7256–7262. [Google Scholar] [CrossRef]
- Sanz-Santos, E.; Gutiérrez-Sánchez, P. Multicomponent and continuous adsorption of neonicotinoid pesticides identified in the EU Watch Lists onto mesoporous and biogenic activated carbon. Sep. Purif. Technol. 2024, 346, 127514. [Google Scholar] [CrossRef]
- Ke, Y.; Zheng, W.; Tian, D.; Ke, S.; Fu, S.; Zhang, Z.; Xie, Y.; Zhu, J.; Ren, B.; Zhang, C.; et al. Occurrence and fate of five representative neonicotinoid insecticides across different wastewater treatment plants and the impact on receiving water bodies. Environ. Res. 2024, 263, 120025. [Google Scholar] [CrossRef]
- Li, J.; Guo, Z.; Cui, K.; Chen, X.; Yang, X.; Dong, D.; Xi, S.; Wu, Z.; Wu, F. Remediating thiacloprid-contaminated soil utilizing straw biochar-loaded iron and manganese oxides activated persulfate: Removal effects and soil environment changes. J. Hazard. Mater. 2023, 459, 132066. [Google Scholar] [CrossRef]
- Awang, N.A.; Salleh, W.N.W.; Aziz, F.; Yusof, N.; Ismail, A.F. A review on preparation, surface enhancement and adsorption mechanism of biochar-supported nano zero-valent iron adsorbent for hazardous heavy metals. J. Chem. Technol. Biotechnol. 2022, 98, 22–44. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, L.; Zhang, Q.; Cao, Y.; Zhang, Y.; Kang, X. Enhanced Cr(VI) removal by biochar-loaded zero-valent iron coupled with weak magnetic field. J. Water Process. Eng. 2022, 47, 102732. [Google Scholar] [CrossRef]
- Barzegar, G.; Jorfi, S.; Zarezade, V.; Khatebasreh, M.; Mehdipour, F.; Ghanbari, F. 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: Reusability, identification of degradation intermediates and potential application for real wastewater. Chemosphere 2018, 201, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, Y.Q.; Chen, S.; Wang, X.L.; Guo, S.; Qiu, Y.F.; Di Liu, Y.; Duan, X.L.; Yu, Y.J. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater. PLoS ONE 2017, 12, e0172337. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, H.; Ren, C.; Min, L.; Zhang, H. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption. Environ. Pollut. 2018, 234, 812–820. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, S.; Xu, M.; Yan, X.; Huang, J.; Wang, H.-W. Removal of neonicotinoid pesticides by adsorption on modified Tenebrio molitor frass biochar: Kinetics and mechanism. Sep. Purif. Technol. 2022, 297, 121506. [Google Scholar] [CrossRef]
- Tang, X.; Chen, Y.; Zheng, W.; Chen, L.; Liu, H.; Li, M.; Yang, Y. Enhancing neonicotinoid removal in recirculating constructed wetlands: The impact of Fe/Mn biochar and microbial interactions. J. Hazard. Mater. 2024, 476, 135139. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Lu, L.; Liu, M.; Zhang, Q.; Farooq, U.; Lu, T.; Qi, Z.; Ge, C. Low-molecular-weight organic acids-mediated transport of neonicotinoid pesticides through saturated soil porous media: Combined effects of the molecular structures of organic acids and the chemical properties of contaminants. Chemosphere 2023, 349, 140870. [Google Scholar] [CrossRef]
- Rescigno, R.; Summa, F.F.; Monaco, G.; Iannece, P.; Hidalgo, M.C.; Sacco, O.; Vaiano, V.; Venditto, V. Solar light-driven degradation of thiacloprid by polymer composites based on P-doped TiO2 as photoactive phase: Theoretical and experimental assessment of the reaction mechanism and degradation pathway. J. Environ. Chem. Eng. 2025, 13, 116255. [Google Scholar] [CrossRef]
- Yin, K.; Deng, Y.; Liu, C.; He, Q.; Wei, Y.; Chen, S.; Liu, T.; Luo, S. Kinetics, pathways and toxicity evaluation of neonicotinoid insecticides degradation via UV/chlorine process. Chem. Eng. J. 2018, 346, 298–306. [Google Scholar] [CrossRef]
- He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese oxide loaded sludge biochar as a novel periodate activator for thiacloprid efficient degradation over a wide pH range. Sep. Purif. Technol. 2022, 288, 120703. [Google Scholar] [CrossRef]
- Hu, Y.; Zhong, Z.; Lu, M.; Muhammad, Y.; Shah, S.J.; He, H.; Gong, W.; Ren, Y.; Yu, X.; Zhao, Z.; et al. Biomimetic O2-carrying and highly in-situ H2O2 generation using Ti3C2 MXene/MIL-100(Fe) hybrid via Fe-Protoporphyrin bridging for photo-fenton synergistic degradation of thiacloprid. Chem. Eng. J. 2022, 450, 137964. [Google Scholar] [CrossRef]
- Dong, X.; He, L.; Liu, Y.; Piao, Y. Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochim. Acta 2018, 292, 55–62. [Google Scholar] [CrossRef]
- Mortazavian, S.; An, H.; Chun, D.; Moon, J. Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies. Chem. Eng. J. 2018, 353, 781–795. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, C.; Yang, X.; Liu, L.; Wang, X.; Yin, W.; Li, Y.C.; Wang, S.; Fu, W. Preparation of highly-conductive pyrogenic carbon-supported zero-valent iron for enhanced Cr(VI) reduction. J. Hazard. Mater. 2020, 396, 122712. [Google Scholar] [CrossRef]
- Zhou, S.; Song, J.; Sun, H.; Jiang, Y.; Jia, H.; Wang, J.; Yin, X. Transport of polyethylene and polypropylene microplastics under the action of agricultural chemicals: Role of pesticide adjuvants and neonicotinoid active ingredients. Environ. Res. 2024, 252, 118975. [Google Scholar] [CrossRef]
- Ding, L.; Guo, J.; Chen, S.; Wang, Y. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms. Talanta 2024, 273, 125937. [Google Scholar] [CrossRef]
- He, C.-S.; Ding, R.-R.; Zhou, G.-N.; He, D.; Fan, P.; Guan, X.-H.; Mu, Y. Coexistence of humic acid enhances the reductive removal of diatrizoate via depassivating zero-valent iron under aerobic conditions. J. Mater. Chem. A 2020, 8, 14634–14643. [Google Scholar] [CrossRef]
- Zuo, W.; Mao, Y.; Zhan, W.; Li, L.; Tian, Y.; Zhang, J.; Ma, W.; Wu, C.; Zhao, L. Activating peroxymonosulfate with Fe-doped biochar for efficient removal of tetracycline: Dual action of reactive oxygen species and electron transfer. J. Environ. Manag. 2024, 359, 120979. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Song, B.; Feng, Q.; Yu, Z.; Hu, K.; Yang, Y.; Shen, X. Efficiently removal of tetracycline via synergistic photocatalysis with Fenton reaction with biochar/FeOOH. Appl. Surf. Sci. 2023, 645, 158869. [Google Scholar] [CrossRef]
- Liao, M.; Wang, X.; Cao, S.; Li, M.; Peng, X.; Zhang, L. Oxalate Modification Dramatically Promoted Cr(VI) Removal with Zero-Valent Iron. ACS ES&T Water 2021, 1, 2109–2118. [Google Scholar] [CrossRef]
- Gunawardana, B.; Swedlund, P.J.; Singhal, N.; Nieuwoudt, M.K. Pentachlorophenol dechlorination with zero valent iron: A Raman and GCMS study of the complex role of surficial iron oxides. Environ. Sci. Pollut. Res. 2018, 25, 17797–17806. [Google Scholar] [CrossRef]
- Gunawardana, B.; Swedlund, P.J.; Singhal, N. Effect of O2, Ni0 coatings, and iron oxide phases on pentachlorophenol dechlorination by zero-valent iron. Environ. Sci. Pollut. Res. 2019, 26, 27687–27698. [Google Scholar] [CrossRef]
- Li, F.; Wang, X.; Xu, C. Research Progress on Structural Characteristics, Structure-Application Relationships, and Environmental Application of Biochar-Supported Zero Valent Iron (ZVI-BC). Curr. Pollut. Rep. 2023, 9, 292–311. [Google Scholar] [CrossRef]
- Jin, R.; Deng, C.; Liu, G.; Zhai, S.; Qi, D. Heterogeneous catalysis of FeOOH in-situ loaded biochar for reactive red X-3B: Catalytic mechanism based on Fenton-like system. J. Environ. Chem. Eng. 2023, 12, 111702. [Google Scholar] [CrossRef]
- Zhou, L.; Fang, Y.; Chi, T.; Zou, H.; Fan, X.; Zeng, Y.; Chen, H.; Wu, H. Biochar as an electron shuttle loaded with Fe/Ni bimetallic nanoparticles for efficient removal of 2,4-dichlorophenols: Performance, degradation pathway and mechanism. J. Water Process. Eng. 2023, 55, 104187. [Google Scholar] [CrossRef]
Catalytic Degradation Materials | Additional Conditions | Degradation Efficiency | Reference |
---|---|---|---|
PTsPS composite aerogel | Solar light | 42% | [33] |
Chlorine | / | 9.17% | [34] |
UV | / | 52.96% | |
Chlorine | UV | 77.68% | |
Sludge biochar (SBC) | / | 19.17% | [35] |
SBC | Periodate | 28.06% | |
Fe-SBC | / | 52.55% | |
Periodate | 69.72% | ||
Mn-SBC | / | 39.20% | |
Periodate | 41.91% | ||
Fe/Mn-SBC | / | 26.59% | |
Periodate | 84.92% | ||
Fe-doped MXene (MXF) | UV | 21.51% | [36] |
MXF with added ascorbic acid (MXFAA) | UV | 27.01% | |
Fe-based metal–organic frameworks (MIL(Fe)) | UV | 40.38% | |
MXF/MIL(Fe) | UV | 51.76% | |
MXFAA/MIL(Fe) | UV | 64.63% | |
PBC | / | 9.09% | This work |
ZVI | / | 19.23% | |
ZVI/PBC | / | 36.65% | |
ZVI/PBC | HA | 39.90% | |
ZVI/PBC | OA | 74.16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Qu, S.; Liu, L. A Mechanistic Approach Toward Enhanced Remediation Potential of Thiacloprid by Zero-Valent Iron/Biochar Supplemented with Organic Acids. Nanomaterials 2025, 15, 570. https://doi.org/10.3390/nano15080570
Pan L, Qu S, Liu L. A Mechanistic Approach Toward Enhanced Remediation Potential of Thiacloprid by Zero-Valent Iron/Biochar Supplemented with Organic Acids. Nanomaterials. 2025; 15(8):570. https://doi.org/10.3390/nano15080570
Chicago/Turabian StylePan, Lin, Shuai Qu, and Longfei Liu. 2025. "A Mechanistic Approach Toward Enhanced Remediation Potential of Thiacloprid by Zero-Valent Iron/Biochar Supplemented with Organic Acids" Nanomaterials 15, no. 8: 570. https://doi.org/10.3390/nano15080570
APA StylePan, L., Qu, S., & Liu, L. (2025). A Mechanistic Approach Toward Enhanced Remediation Potential of Thiacloprid by Zero-Valent Iron/Biochar Supplemented with Organic Acids. Nanomaterials, 15(8), 570. https://doi.org/10.3390/nano15080570