New Electromagnetic Interference Shielding Materials: Biochars, Scaffolds, Rare Earth, and Ferrite-Based Materials
Abstract
:1. Introduction
2. New EMI Shielding Materials: Biochars, Scaffolds, Rare Earth, and Ferrite-Based Materials
2.1. Biochar as EMI Shielding Material
- (1)
- The experimental conditions (temperature, duration of heating, addition of chemical agent for pore formation or activitvation of graphitization, selected gas);
- (2)
- The starting material’s chemical composition [39].
2.2. Scaffolds as EMI Shielding Material
2.3. Rare-Earth-Based Materials as EMI Shielding Material
2.3.1. Synthesis, Morphology, and EMI Shielding Efficiency of RE-Based Materials
Synthesis of GdxFe3−xO4, x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1
Synthesis of CoFe2−xDyxO4 Nanoparticles
Synthesis of Gd- and Er-Doped α-MnO2 Nanorods
2.4. Iron Oxide-Based Materials as EMI Shielding Material
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, C.; Qiu, H.; Song, P.; Shi, X.; Kong, J.; Gu, J. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622. [Google Scholar] [CrossRef]
- Li, J.; Cui, M.; Wen, J.; Chen, Y.; Shi, B.; Fan, H.; Xiang, J. Leather-like hierarchical porous composites with outstanding electromagnetic interference shielding effectiveness and durability. Compos. B Eng. 2021, 225, 109272. [Google Scholar] [CrossRef]
- Manassas, A.; Apostolidis, C.; Iakovidis, S.; Babas, D.; Samaras, T. A study of the long term changes in the electromagnetic environment using data from continuous monitoring sensors in Greece. Sci. Rep. 2023, 13, 13784. [Google Scholar] [CrossRef]
- Tolvanen, J.; Hannu, J.; Hietala, M.; Kordas, K.; Jantunen, H. Biodegradable multiphase poly(lactic acid)/biochar/graphite composites for electromagnetic interference shielding. Compos. Sci. Technol. 2019, 181, 107704. [Google Scholar] [CrossRef]
- Calvente, I.; Núñez, M.I. Is the sustainability of exposure to non-ionizing electromagnetic radiation possible? Med. Clín. 2024, 162, 387–393. [Google Scholar] [CrossRef]
- Bandara, P.; Carpenter, D.O. Planetary electromagnetic pollution: It is time to assess its impact. Lancet Planet. Health 2018, 2, e512–e514. [Google Scholar] [CrossRef]
- Karimi, A.; Ghadiri Moghaddam, F.; Valipour, M. Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Mol. Biol. Rep. 2020, 47, 5621–5633. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Gao, P.; Guo, Y.; Chen, Q.; Lang, H.; Guo, Q.; Miao, X.; Li, J.; Zeng, L.; Guo, G. Effects of long-term exposure to L-band high-power microwave on the brain function of male mice. Biomed Res. Int. 2021, 2021, 2237370. [Google Scholar] [CrossRef]
- Touitou, Y.; Selmaoui, B.; Lambrozo, J. Assessment of cortisol secretory pattern in workers chronically exposed to ELF-EMF generated by high voltage transmission lines and substations. Environ. Int. 2022, 161, 107103. [Google Scholar] [CrossRef]
- Alshammary, R.N.; Mohammed Zaki, Z.D.; Al-Haaik, A.G. Effect of mobile frequencies exposure on histology of retina and cornea in pregnant albino mice. Iraqi J. Vet. Sci. 2022, 36, 245–249. [Google Scholar] [CrossRef]
- Tuhanioğlu, B.; Erkan, S.O.; Gürgen, S.G.; Özdaş, T.; Görgülü, O.; Çiçek, F.; Günay, İ. The effect of very low dose pulsed magnetic waves on cochlea. Braz. J. Otorhinolaryngol. 2019, 85, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Dunham, A.; Pegg, J.R.; Carolsfeld, W.; Davies, S.; Murfitt, I.; Boutillier, J. Effects of submarine power transmission cables on a glass sponge reef and associated megafaunal community. Mar. Environ. Res. 2015, 107, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Harsanyi, P.; Scott, K.; Easton, B.A.A.; de la Cruz Ortiz, G.; Chapman, E.C.N.; Piper, A.J.R.; Rochas, C.M.V.; Lyndon, A.R. The effects of anthropogenic electromagnetic fields (EMF) on the early development of two commercially important crustaceans, European lobster, Homarus gammarus (L.) and Edible crab, Cancer pagurus (L.). J. Mar. Sci. Eng. 2022, 10, 564. [Google Scholar] [CrossRef]
- Piccinetti, C.C.; De Leo, A.; Cosoli, G.; Scalise, L.; Randazzo, B.; Cerri, G.; Olivotto, I. Measurement of the 100 MHz EMF radiation in vivo effects on zebrafish D. rerio embryonic development: A multidisciplinary study. Ecotoxicol. Environ. Saf. 2018, 154, 268–279. [Google Scholar] [CrossRef]
- Boga, A.; Emre, M.; Sertdemir, Y.; Uncu, İ.; Binokay, S.; Demirhan, O. Effects of GSM-like radiofrequency irradiation during the oogenesis and spermiogenesis of Xenopus laevis. Ecotoxicol. Environ. Saf. 2016, 129, 137–144. [Google Scholar] [CrossRef]
- Chen, L.; Mai, T.; Ji, X.-X.; Wang, P.-L.; Qi, M.-Y.; Liu, Q.; Ding, Y.; Ma, M.-G. 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chem. Eng. J. 2023, 476, 146652. [Google Scholar] [CrossRef]
- Chung, D.D.L. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020, 255, 123587. [Google Scholar] [CrossRef]
- Orasugh, J.T.; Ray, S.S. Functional and structural facts of effecttive electromagnetic interference shielding materials: A review. ACS Omega 2023, 8, 8134–8158. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; Deng, K.; Jiang, J.; Yang, Z.; Zhang, R. Preparation of graphite/ferrite/resin-based composite high-efficiency wave-absorbing materials by selective laser sintering. Adv. Eng. Mater. 2023, 25, 2301080. [Google Scholar] [CrossRef]
- Ji, Z.; Wang, Q.; Wang, Z.; Duan, Y.; Dong, C.; Liaw, P.K. Electromagnetic wave-absorbing behavior of soft-magnetic medium entropy alloys with BCC/L21 coherent microstructure. Mater. Des. 2022, 222, 111054. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, Z.; Huang, L.; Meng, Z.; Yu, H.; Kou, X.; Zou, Z.; Huang, P.; Wang, Y.; Xi, D.; et al. Simultaneous optimization of conduction and polarization losses in CNT@NiCo compounds for superior electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 166, 34–46. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Chen, P.; Li, X. Effect of rare earth-transition metal electronic interaction on magnetism in FeCoEr alloys. J. Rare Earths 2024, in press. [CrossRef]
- Liu, H.; Yang, S.; Wang, G.; Liu, H.; Peng, Y.; Sun, C.; Li, J.; Chen, J. Strong electronic orbit coupling between cobalt and single-atom praseodymium for boosted nitrous oxide decomposition on Co3O4 catalyst. Environ. Sci. Technol. 2022, 56, 16325–16335. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Zhao, K.; Nie, A.; Alharthi, S.; Amin, M.A.; El-Bahy, Z.M.; Li, H.; Chen, L.; Xu, B.B.; et al. Research progress on electromagnetic wave absorption based on magnetic metal oxides and their composites. Adv. Compos. Hybrid Mater. 2023, 6, 120. [Google Scholar] [CrossRef]
- Jha, A.R. Rare Earth Materials: Properties and Applications; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wen, H.; Zhao, W.; Han, X. Constructing Co3O4/La2Ti2O7 p-n heterojunction for the enhancement of photocatalytic hydrogen evolution. Nanomaterials 2022, 12, 1695. [Google Scholar] [CrossRef] [PubMed]
- Legvold, S. Chapter 3: Rare earth metals and alloys in book. Handb. Ferromagn. Mater. 1980, 1, 183–295. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Zhang, W.; Chen, W. Synthesis and electromagnetic properties of La-doped Ni–Zn ferrites. J. Magn. Magn. Mater. 2016, 398, 90–95. [Google Scholar] [CrossRef]
- Kumar, P.; Pathak, S.; Singh, A.; Verma, R.; Khanduri, H.; Jain, K.; Tawale, J.; Wang, L.; Pant, R.P. Augmented magnetic nanoparticle assimilation in rGO sheets for tailored static and dynamic magnetic properties in surface functionalized Co0.8Zn0.2Fe2O4 nanoferrite–rGO hybrid structures. J. Mater. Chem. C 2024, 12, 18036–18047. [Google Scholar] [CrossRef]
- Pathak, S.; Verma, R.; Singhal, S.; Chaturvedi, R.; Kumar, P.; Sharma, P.; Pant, R.P.; Wang, X. Spin dynamics investigations of multifunctional ambient scalable Fe3O4 surface decorated ZnO magnetic nanocomposite using FMR. Sci. Rep. 2021, 11, 3799. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, R.; Jing, J.; Kang, S.; Ma, L.; Zhang, K.; Li, J.; Zhang, Y.; Qin, J.; Yun, S.; et al. Lightweight Dual-Functional Segregated Nanocomposite Foams for Integrated Infrared Stealth and Absorption-Dominant Electromagnetic Interference Shielding. Nano-Micro Lett. 2024, 16, 223. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, R.; Zhang, Y.; Ma, L.; Bai, Y.; Zhang, K.; Zuo, X.; Zuo, Y.; Jing, H.; Qin, J.; et al. Lightweight and mechanically strong MXene-Based microcellular nanocomposite foams for integrated electromagnetic interference shielding and thermal management. Compos. Sci. Technol. 2025, 260, 110988. [Google Scholar] [CrossRef]
- Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Dosoudil, R.; Gořalík, M.; Hudec, I. Electromagnetic Interference Shielding and Physical-Mechanical Characteristics of Rubber Com-posites Filled with Manganese-Zinc Ferrite and Carbon Black. Polymers 2021, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Li, J.; Lin, J.; Li, W.; Xin, J.; Liu, F.; He, X.; Ma, Z.; Zhao, Q. Honeycomb-like Polyimide/Fe3O4@PPy foam for electromagnetic wave shielding with excellent absorption characteristics. Compos. Sci. Technol. 2024, 249, 110489. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Q.; Huang, B.; Feng, S.; Lu, C. Facile Fabrication of Densely Packed Ti3C2 MXene/Nanocellulose Composite Films for Enhancing Electromagnetic Interference Shielding and Electro-/Photothermal Performance. ACS Nano 2021, 15, 12405–12417. [Google Scholar] [CrossRef]
- Miao, Y.; Lin, J.; Wang, E.; Liang, Y.; Li, W.; Dai, C.; Huang, J.; Zhang, W. Electrically conductive bamboo charcoal@cellulose nanofibrils based composite membranes designed for electromagnetic interference shielding and flame retardant. Ind. Crop. Prod. 2023, 206, 117713. [Google Scholar] [CrossRef]
- Perumal, R.S.; Muralidharan, B. Valorization of Ricinus communis outer shell biomass to biochar: Impact of thermal decomposition temperature on physicochemical properties and EMI shielding performance. Results Eng. 2024, 24, 103097. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Li, S.; Huang, A.; Chen, Y.-J.; Li, D.; Turng, L.-S. Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Compos. B Eng. 2018, 153, 277–284. [Google Scholar] [CrossRef]
- Gabhi, R.S.; Kirk, D.W.; Jia, C.Q. Preliminary investigation of electrical conductivity of monolithic biochar. Carbon 2017, 116, 435–442. [Google Scholar] [CrossRef]
- Gokce, E.C.; Calisir, M.D.; Selcuk, S.; Gungor, M.; Acma, M.E. Electromagnetic interference shielding using biomass-derived carbon materials. Mater. Chem. Phys. 2024, 317, 129165. [Google Scholar] [CrossRef]
- Akgül, G.; Demir, B.; Gündoğdu, A.; Türk, A.S.; Sözer, S. Biochar-iron composites as electromagnetic interference shielding material. Mater. Res. Express 2020, 7, 015604. [Google Scholar] [CrossRef]
- Natalio, F.; Corrales, T.P.; Feldman, Y.; Lew, B.; Graber, E.R. Sustainable lightweight biochar-based composites with electromagnetic shielding properties. ACS Omega 2020, 5, 32490–32497. [Google Scholar] [CrossRef]
- Savi, P.; Yasir, M. Waveguide measurements of biochar derived from sewage sludge. Electron. Lett. 2020, 56, 335–337. [Google Scholar] [CrossRef]
- Savi, P.; Yasir, M.; Bartoli, M.; Giorcelli, M.; Longo, M. Electrical and Microwave Characterization of Thermal Annealed Sewage Sludge Derived Biochar Composites. Appl. Sci. 2020, 10, 1334. [Google Scholar] [CrossRef]
- Yasir, M.; Zaccagnini, P.; Palmara, G.; Frascella, F.; Paccotti, N.; Savi, P. Morphological Characterization and Lumped Element Model of Graphene and Biochar Thick Films. C 2021, 7, 36. [Google Scholar] [CrossRef]
- Savi, P.; Ruscica, G.; di Summa, D.; Natali Sora, I. Shielding effectiveness measurements of drywall panel coated with biochar layers. Electronics 2022, 11, 2312. [Google Scholar] [CrossRef]
- Ruscica, G.; Peinetti, F.; Natali Sora, I.; Savi, P. Analysis of electromagnetic shielding properties of cement-based composites with biochar and PVC as fillers. C 2024, 10, 21. [Google Scholar] [CrossRef]
- Nikolopoulos, C.D.; Baklezos, A.T.; Kapetanakis, T.N.; Vardiambasis, I.O.; Tsubota, T.; Kalderis, D. Characterization of the electromagnetic shielding effectiveness of biochar-based materials. IEEE Access 2023, 11, 6413–6420. [Google Scholar] [CrossRef]
- Milenkovic, M.; Saeed, W.; Yasir, M.; Nassar, K.E.S.; Syrgiannis, Z.; Milivojevic, D.; Spanopoulos, I.; Azmy, A.; Bajuk-Bogdanovic, D.; Maletić, S.; et al. Carbonized apples and quinces stillage for electromagnetic shielding. Nanomaterials 2024, 14, 1882. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Zou, F.; Fang, B.; Zhao, J.; Zhang, H.; Guo, J.; Jia, L.; Yan, D. Construction of lightweight, high-energy absorption 3D-printed scaffold for electromagnetic interference shielding with low reflection. Compos. B Eng. 2025, 291, 112043. [Google Scholar] [CrossRef]
- Tran, T.T.V.; Vo, D.-V.N.; Nguyen, S.T.; Luu, S.D.N.; Mofijur, M.; Vu, C.M. In situ sintered silver decorated 3D structure of cellulose scaffold for highly thermoconductive electromagnetic interference shielding epoxy nanocomposites. J. Appl. Polym. Sci. 2021, 138, 51193. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Zhao, Z.; Wang, Q.; Wei, Q.; Cai, Y. Dual-encapsulated multifunctional phase change composites based on biological porous carbon for efficient energy storage and conversion, thermal management, and electromagnetic interference shielding. Energy Storage Mater. 2022, 55, 105358. [Google Scholar] [CrossRef]
- Wei, Z.; Cheng, Y.; Hu, X.; Meng, Y.; Zhan, Y.; Li, Y.; Xia, H.; Jiang, X.; Chen, Z. Cellulose–derived carbon scaffolds with bidirectional gradient Fe3O4 distribution: Integration of green EMI shielding and thermal management. Int. J. Biol. Macromol. 2024, 275, 133724. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Han, X.-S.; Zhou, Z.-J.; Meng, W.-Y.; Han, X.-W.; Wang, S.-J.; Pu, J.-W. Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 2021, 213, 108931. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Cui, Y.; Li, J.; Cao, M.; Qi, W.; Cao, X.; Li, B. Engineering multifunctional phase change composites enabled by dual-interpenetrating hybrid scaffold for excellent thermal conductivity and electromagnetic absorption. J. Chem. Eng. 2024, 492, 152259. [Google Scholar] [CrossRef]
- Yasir, M.; di Summa, D.; Ruscica, G.; Natali Sora, I.; Savi, P. Shielding properties of cement composites filled with commercial biochar. Electronics 2020, 9, 819. [Google Scholar] [CrossRef]
- Babu, M.; Bapu, B.R.T.; Muruganantham, P.; Anita, R.; Nagaraju, V.; P. J. Kumar, S. Role of cashew shell biochar on EMI shielding behaviour of carbon fibre–epoxy nanocomposites in E, F, I and J band–microwave frequencies. Biomass Convers. Biorefinery 2023, 13, 375–382. [Google Scholar] [CrossRef]
- Suresh, N.; Sivakumar, P.; Malathi, A.C.J.; Balamurugan, K.S. Effect of temperature on EMI shielding behavior of jack fruit rags biochar and waste silk fiber-reinforced vinyl ester composite. J. Mater. Sci. Mater. Electron. 2025, 36, 100. [Google Scholar] [CrossRef]
- Sharma, S.; Parne, S.R.; Srihari, S.; Panda, S.; Gandi, S. Progress in microwave absorbing materials: A critical review. Adv. Colloid Interface Sci. 2024, 327, 103143. [Google Scholar] [CrossRef]
- Nikzad, A.; Parvizi, R. Presence of neodymium and gadolinium in cobalt ferrite lattice: Structural, magnetic and microwave features for electromagnetic wave absorbing. J. Rare Earth 2020, 38, 411–417. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Ji, X.; Chen, L.; Yan, H.; Xing, Z.; Wang, B. Preparation and electrorheological behavior of rare-earth La ion doping MIL-125 nanoparticles. Adv. Eng. Mater. 2024, 26, 2401323. [Google Scholar] [CrossRef]
- Isari, A.A.; Ghaffarkhah, A.; Hashemi, S.A.; Wuttke, S.; Arjmand, M. Structural design for EMI shielding: From underlying mechanisms to common pitfalls. Adv. Mater. 2024, 36, 2310683. [Google Scholar] [CrossRef]
- Qiao, J.; Li, L.; Liu, J.; Wu, N.; Liu, W.; Wu, F.; Zeng, Z. The vital application of rare earth for future high-performance electromagnetic wave absorption materials: A review. J. Mater. Sci. Technol. 2024, 176, 188–203. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, L.; Liu, W.; Wu, N.; Liu, J.; Pan, F.; Zeng, Z. Research progress on controllable absorption properties of rare earth element doped electromagnetic wave absorbing materials. Chin. J. Chem. 2024, 42, 2536–2549. [Google Scholar] [CrossRef]
- Mohapatra, P.P.; Ghosh, S.; Jain, A.; Aich, S.; Dobbidi, P. Rare earth substituted lithium ferrite/carbon black ceramic composites for shielding electromagnetic radiation. J. Magn. Magn. Mater. 2023, 573, 170678. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, J.; Liu, J.; Zhang, Y. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization, and applications. Adv. Sci. 2019, 6, 1901358. [Google Scholar] [CrossRef]
- Liu, J.; Pan, Y.; Yu, L.; Gao, Z.; Zhang, S.; Lan, D.; Jia, Z.; Wu, G. MoS2-based composites for microwave absorption mechanism-oriented structural optimization and design perspectives. Carbon 2025, 238, 120233. [Google Scholar] [CrossRef]
- Prasad, J.; Singh, A.K.; Gahlot, A.P.S.; Tomar, M.; Gupta, V.; Singh, K. Electromagnetic interference shielding properties of hierarchical core-shell palladium-doped MoS2/CNT nanohybrid materials. Ceram. Int. 2021, 47, 27586–27597. [Google Scholar]
- Zhang, H.; Ma, G.; Wu, H.; Yuan, M.; Liu, X.; Huang, Z. Enhanced mechanical and wave-absorption properties of SiC–Si3N4–FeSi porous ceramics by introducing Al. J. Am. Ceram. Soc. 2024, 107, 6821–6832. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Zhu, X.; Chen, J.; Liang, J.; Wang, M. Influence of various rare earth elements co-integration on the properties of super multifunctional metal-based materials fabricated by laser cladding. Appl. Mater. Today 2024, 37, 102093. [Google Scholar] [CrossRef]
- Li, Z.; Mi, W.; Bai, H. The role of rare–earth dopants in tailoring the magnetism and magnetic anisotropy in Fe4N. J. Phys. Chem. Solids 2018, 116, 7–14. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, B.; Xiang, H.; Dai, F.-Z.; Wu, S.; Yanchun, Z. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HEREB6) and high entropy rare earth hexaborides/borates (HEREB6/HE REBO3) composite powders. J. Adv. Ceram. 2021, 10, 62–77. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, B.; Zhao, Z.; Xiang, H.; Dai, F.-Z.; Liu, J.; Zhou, Y. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides. J. Mater. Sci. Technol. 2020, 47, 216–222. [Google Scholar] [CrossRef]
- Zámborszky, F.; Gyüre Garami, B.; Jánosi, B.; Vajtai, L.; Hegyessy, L.; Gresits, I.; Simon, F. High-frequency characterization of Fe-based nanocrystalline cores. J. Magn. Magn. Mater. 2022, 564, 170027. [Google Scholar] [CrossRef]
- Azmat, M.; Yang, J.; Li, Q.; Zhang, J.; Haibo, J.; Kashif, N.M.; Li, J. Role of 4f electrons and 3d-4f hybridization in metal-insulator transition in RE (La, Nd, Sm, Eu, Dy and Er)-doped vanadium dioxide for thermochromic applications. Ceram. Int. 2024, 50, 11119–11128. [Google Scholar] [CrossRef]
- Nagaraj, N.; Manjunatha, H.C.; Vidya, Y.S.; Seenappa, L.; Sridhar, K.N.; Gupta, P.S.D. Investigations on lanthanide polymers for radiation shielding purpose. Radiat. Phys. Chem. 2022, 199, 110310. [Google Scholar] [CrossRef]
- Hasan, M.S.; Khan, M.I.; Mandal, G.; Awais, M.; Farhat, L.B.; Liu, J. Integrating the structural, electro-optical, dielectric, and magnetic features of Co–Mg–La ferrites/graphene composites. J. Am. Ceram. Soc. 2025, 108, e20329. [Google Scholar] [CrossRef]
- Jia, Z.; Gao, Z.; Kou, K.; Feng, A.; Zhang, C.; Xu, B.; Wu, G. Facile synthesis of hierarchical A-site cation deficiency perovskite LaxFeO3−y/RGO for high efficiency microwave absorption. Compos. Commun. 2020, 20, 100344. [Google Scholar] [CrossRef]
- Serrano, A.; García-Martín, E.; Granados-Miralles, C.; Gorni, G.; López-Sánchez, J.; Ruiz-Gómez, S.; Pérez, L.; Quesada, A.; Fernández, J.F. Hexaferrite-based permanent magnets with upper magnetic properties by cold sintering process via a non-aqueous solvent. Acta Mater. 2021, 219, 117262. [Google Scholar] [CrossRef]
- Kahil, H.; Faramawy, A.; El-Sayed, H.; Abdel-Sattar, A. Magnetic properties and SAR for gadolinium-doped iron oxide nanoparticles prepared by hydrothermal method. Crystals 2021, 11, 1153. [Google Scholar] [CrossRef]
- Choudhary, N.; Verma, M.K.; Sharma, N.D.; Sharma, S.; Singh, D. Correlation between magnetic and transport properties of rare earth doped perovskite manganites La0.6R0.1Ca0.3MnO3 (R = La, Nd, Sm, Gd, and Dy) synthesized by Pechini process. Mater. Chem. Phys. 2020, 242, 122482. [Google Scholar] [CrossRef]
- Available online: http://abulafia.mt.ic.ac.uk/shannon/ptable.php (accessed on 30 March 2025).
- Rajeshwari, A.; Punithavathy, I.K.; Jeyakumar, S.J.; Jothibas, M. Dependance of gadolinium ions on structural, magnetic and dielectric properties of manganese nanoferrites. Mater. Chem. Phys. 2023, 296, 127195. [Google Scholar] [CrossRef]
- Kadam, A.B.; Mande, V.K.; Kadam, S.B.; Kadam, R.H.; Shirsath, S.E.; Borade, R.B. Influence of gadolinium (Gd3+) ion substitution on structural, magnetic and electrical properties of cobalt ferrites. J. Alloys Compd. 2020, 840, 155669. [Google Scholar] [CrossRef]
- Geetha, P.; Taddesse, P.; Murali, N.; Narayana, P.V.L. Impact of Gd3+ and Nd3+ ions substitution on structural and magnetic properties of Co0.5Ni0.5Fe2O4 ferrite system. J. Indian Chem. Soc. 2022, 99, 100255. [Google Scholar] [CrossRef]
- Manner, O.; Sarmah, S.; Patra, K.P.; Maji, D.; Ravi, S.; Bora, T. Effect of rare earth (Ho and Er) co-substitution on the magnetic and dielectric properties of nanocrystalline cobalt ferrites. Ceram. Int. 2024, 50, 30912–30930. [Google Scholar] [CrossRef]
- Mohapatra, P.P.; Dobbidi, P. Development of spinel ferrite-based composites for efficient EMI shielding. Mater. Chem. Phys. 2023, 301, 127581. [Google Scholar] [CrossRef]
- Cheng, F.; Jia, J.; Xu, Z.; Zhou, B.; Liao, C.; Yan, C.-H.; Chen, L.-Y.; Zhao, H.-B. Microstructure, magnetic and magneto-optical properties of chemical synthe sized Co–RE (RE, Ho, Er, Tm, Yb, Lu) ferrite nanocrystalline films. J. Appl. Phys. 1999, 86, 2727–2732. [Google Scholar] [CrossRef]
- Bansal, M.; Ahlawat, S.D.; Singh, A.; Rathee, S.P.; Kumar, V.; Maan, A.; Singh, M. Sol-gel synthesized CoFe2−xGdxO4:SiO2 nanocomposites for structural, thermal and magnetic investigation. Next Mater. 2025, 6, 100470. [Google Scholar] [CrossRef]
- Srinivas, C.; Praveen, K.N.; Kumar, E.R.; Singh, S.; Meena, S.S.; Bhatt, P.; Rao, C.T.V.; Sarkar, D.; Arun, B.; Raju, K.C.J.; et al. Microwave absorption properties of rare earth (RE) ions doped Mn–Ni–Zn nanoferrites (RE = Dy, Sm, Ce, Er) to shield electromagnetic interference (EMI) in X-band frequency. Ceram. Int. 2022, 48, 33891–33900. [Google Scholar] [CrossRef]
- Kumar, T.M.M.; Kini, H.J.; Praveen, M.; Kumar, M. Electromagnetic interference shielding performance of lanthanum ferrite with MWCNT and graphene in the polyethylene polymer matrix in X-band frequency. Diam. Relat. Mater. 2024, 141, 110701. [Google Scholar] [CrossRef]
- Mashadi, Y.; Winatapura, D.S.; Setiawan, J.; Mulyawan, A.; Fakhrudin, M.; Taryana, Y.; Sudrajat, N.; Adi, W.A.; Gunanto, Y.E. Microwave absorbing material of cobalt lanthanum ferrite: The contributions of intrinsic and extrinsic factors on the microwave absorption properties. Appl. Phys. A 2024, 130, 921. [Google Scholar] [CrossRef]
- Yunasfi; Dewi, S.H.; Mashadi; Winatapura, D.S.; Setiawan, J.; Mulyawan, A.; Edi Gunanto, Y.; Ari Adi, W. Exploring the structural and magnetic properties of La-doped nickel ferrite for microwave absorbing application. J. Magn. Magn. Mater. 2024, 603, 172267. [Google Scholar] [CrossRef]
- Prasad, J.; Singh, K.A.; Haldar, K.K.; Gupta, V.; Singh, K. Electromagnetic interference shielding effectiveness in 3D flower-like MoS2-rGO/gadolinium-doped nanocomposites. J. Alloys Compd. 2019, 788, 861–872. [Google Scholar] [CrossRef]
- Das, S.; Banerjee, A.; Pal, P.; Rudra, S.; Nandi, U.; Ghosh, A. Hydrothermally synthesized gadolinium doped molybdenum disulfide for electrochemical supercapacitor applications. J. Energy Storage 2024, 99, 113268. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; He, L.; Guo, H.; Xia, W.; Sun, B.; Cao, C.; Sha, L.; Zhou, D. MoS2-based nanocomposites for microwave absorption: A review. ACS Appl. Nano Mater. 2024, 7, 5761–5775. [Google Scholar] [CrossRef]
- Hu, R.; He, X.; Luo, Y.; Liu, C.; Liu, S.; Lv, X.; Yan, J.; Peng, Y.; Yuan, M.; Che, R. Biomimetic multi-interface design of raspberry-like absorbent: Gd-doped FeNi3@covalent organic framework derivatives for efficient electromagnetic attenuation. Small Methods 2024, in press. [CrossRef]
- Phani, P.S.D.R.; Sahu, S.; Gurrala, R.C.; Dobbidi, P.; Raidongia, K.; Latha, B.S.; Babu, B.K.; Annapurna, N. Leveraging synergistic interfaces in NiO and NiO/rGO heterostructures for enhanced microwave absorption. Surf. Interface 2025, 56, 105617. [Google Scholar] [CrossRef]
- Akbar, R.; Shifa, M.S.; Saleem, A.; Zaib, A.; Raheem, F.; Khaliq, M.W. Tuning the properties of praseodymium cobalt-zinc ferrites by substitution of bismuth. J. Mat. Phy. Sci. 2022, 3, 1–13. [Google Scholar] [CrossRef]
- Das, D.; Dikshit, A.P.; Samal, R.R.; Parashar, K.; Parashar, S.K.S. A-site Pr-doped BNT ceramics for absorption-dominated EMI shielding in X-band. J. Mater. Sci. Mater. Electron. 2025, 36, 139. [Google Scholar] [CrossRef]
- Seethalakshmi, K.; Sakthipandi, K.; Sethuraman, B.; Alhashmi, B.; Venkatesan, K.; Rajkumar, G.; Alqarni, A.S.; Ansari, I.A.; Raghavan, M.S. Investigation of electromagnetic shielding effectiveness and magnetic phase transitions of neodymium-doped Cu0.25Ni0.5Zn0.25Fe2−xNdxO4 nanoferrites. J. Rare Earth, 2025; in press. [Google Scholar] [CrossRef]
- Majeed, M.; Akhtar, M.; Khatoon, R.; Amin, N.; Morley, N.; Tung, L.D.; Amami, M.; Abbas, W.; Siddeeg, S.M.; Thanh, N.T.K.; et al. Dielectric and magnetic response of Cu-Co-Sm ferrite impregnated with graphene nanoplatelets for high-frequency device applications. J. Alloys Compd. 2024, 986, 173770. [Google Scholar] [CrossRef]
- Kanna, R.R.; Jaisiva, S.; Dhineshbabu, N.R.; Kesavan, M.P.; Lenin, N.; Prasad, L.G.; Kumar, P.R. Microwave-absorbing behavior of rare-earth-ion-doped copper manganese nanoferrites in X-band frequency. Ceram. Int. 2024, 50, 39763–39774. [Google Scholar] [CrossRef]
- Kumar, P.V.P.; Suryanarayana, B.; Vemula, V.L.; Rao, D.J.; Uppugalla, S.; Ramakrishna, Y. Effect of rare earth ions (RE = La3+, Sm3+, Nd3+, and Gd3+) substitution on structural, magnetic properties, and dc electrical resistivity of Co0.5Ni0.5Fe2O4 ferrite. Appl. Phys. A 2023, 129, 496. [Google Scholar] [CrossRef]
- Deng, Y.; Li, L.; Wang, L.; Wu, N.; Jin, H.; Gao, F.; Zeng, Z. Rare earth Ce-doped W-type barium ferrites for tunable electromagnetic waves absorption performance. Mater. Res. Bull. 2024, 176, 112792. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, P.; Li, Y.; Li, S.; Zhu, L. The fabrication of Ce-MOFs with the effective electromagnetic wave absorption performance. Inorg. Chem. Commun. 2024, 168, 112950. [Google Scholar] [CrossRef]
- Deng, Y.; Guo, H.; Zhao, C.; Huang, J.; Song, F.; Zeng, X. Rare-earth metal-based CuLa@NC nanorods anchoring Mo-MXene layers for electromagnetic wave absorption. Colloids Surf. A Physicochem. Eng. Asp. 2025, 708, 135964. [Google Scholar] [CrossRef]
- Li, N.; Wen, B.; Li, X.; Zuo, A.; Yang, S.; Ding, S.; Yang, G. High-quality ultrathin Gd2O2S nanosheets with oxygen vacancy-decorated rGO for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2023, 15, 53891–53901. [Google Scholar] [CrossRef]
- Gahlawat, R.; Shukla, R. Enhanced EMI shielding performance of CoFe2−xDyxO4/polypyrrole nanocomposites in Ku-band. Surf. Interface 2025, 56, 105629. [Google Scholar] [CrossRef]
- Mondal, D.; Bhattacharya, D.; Mondal, T.; Kundu, M.; Sarkar, S.; Mandal, T.K.; Paul, B.K.; Das, S. Rare earth ion-infused α-MnO2 nano-rods for excellent EMI shielding efficiency: Experimental and theoretical insights. Sustain. Mater. Technol. 2023, 38, e00772. [Google Scholar] [CrossRef]
- Zboril, R.; Mashlan, M.; Petridis, D. Iron(III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 2002, 14, 969–982. [Google Scholar] [CrossRef]
- Raming, T.P.; Winnubst, A.J.A.; van Kats, C.M.; Philipse, A.P. The synthesis and magnetic properties of nanosized hematite (α-Fe2O3) particles. J. Colloid Interface Sci. 2002, 249, 346–350. [Google Scholar] [CrossRef]
- Morrish, A.H. Morphology and Physical Properties of Gamma Iron Oxide. In Growth and Properties; Freyhardt, H.C., Ed.; Springer: Berlin/Heidelberg, Germany, 1980; pp. 171–197. [Google Scholar] [CrossRef]
- Uyama, T.; Mukai, K.; Yamada, I. Facile and low-temperature synthesis of γ-Fe2O3 nanoparticles with thermally stable ferrimagnetism for use in magnetic recording tapes. ACS Appl. Nano Mater. 2020, 3, 10678–10690. [Google Scholar] [CrossRef]
- Kelm, K.; Mader, W. Synthesis and structural analysis of ϵ-Fe2O3. Z. Anorg. Allg. Chem. 2005, 631, 2383–2389. [Google Scholar] [CrossRef]
- Azadmanjiri, J.; Hojati-Talemi, P.; Simon, G.P.; Suzuki, K.; Selomulya, C. Synthesis and electromagnetic interference shielding properties of iron oxide/polypyrrole nanocomposites. Polym. Sci. Eng. 2011, 51, 247–253. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.P.; Varshney, S.; Agrawal, N.; Sambyal, P.; Pandey, Y.; Singh, B.P.; Singh, V.N.; Gupta, B.K.; Dhawan, S.K. New insight into the shape-controlled synthesis and microwave shielding properties of iron oxide covered with reduced graphene oxide. RSC Adv. 2014, 4, 62413–62422. [Google Scholar] [CrossRef]
- Dhawan, S.K.; Singh, K.; Bakhshi, A.K.; Ohlan, A. Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption. Synth. Met. 2009, 159, 2259–2262. [Google Scholar] [CrossRef]
- Singh, A.P.; Mishra, M.; Sambyal, P.; Gupta, B.K.; Singh, B.P.; Chandra, A.; Dhawan, S.K. Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core–shell tubes as an exceptional tracker for electromagnetic environmental pollution. J. Mater. Chem. A 2014, 2, 3581–3593. [Google Scholar] [CrossRef]
- Rao, B.V.B.; Chengappa, M.; Kale, S.N. Lightweight, flexible and thin Fe3O4-loaded, functionalized multi walled carbon nanotube buckypapers for enhanced X-band electromagnetic interference shielding. Mater. Res. Express 2017, 4, 045012. [Google Scholar] [CrossRef]
- Liu, Y.; Song, D.; Wu, C.; Leng, J. EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe. Compos. B Eng. 2014, 63, 34–40. [Google Scholar] [CrossRef]
- Li, L.-Y.; Li, S.-L.; Shao, Y.; Dou, R.; Yin, B.; Yang, M.-B. PVDF/PS/HDPE/MWCNTs/Fe3O4 nanocomposites: Effective and lightweight electromagnetic interference shielding material through the synergetic effect of MWCNTs and Fe3O4 nanoparticles. Curr. Appl. Phys. 2018, 18, 388–396. [Google Scholar] [CrossRef]
- Prasad, J.; Singh, A.K.; Shah, J.; Kotnala, R.K.; Singh, K. Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness. Mater. Res. Express 2018, 5, 055028. [Google Scholar] [CrossRef]
- Sambyal, P.; Dhawan, S.K.; Gairola, P.; Chauhan, S.S.; Gairola, S.P. Synergistic effect of polypyrrole/BST/rGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-Band. Curr. Appl. Phys. 2018, 18, 611–618. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, J.; Zhang, K.; Li, Y.; Meng, Y.; Yan, N.; Wei, W.; Peng, F.; Xia, H. Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. J. Chem. Eng. 2018, 344, 184–193. [Google Scholar] [CrossRef]
- Liu, H.; Liang, C.; Chen, J.; Huang, Y.; Cheng, F.; Wen, F.; Xu, B.; Wang, B. Novel 3D network porous graphene nanoplatelets/Fe3O4/epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 2019, 169, 103–109. [Google Scholar] [CrossRef]
- Huangfu, Y.; Liang, C.; Han, Y.; Qiu, H.; Song, P.; Wang, L.; Kong, J.; Gu, J. Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 2019, 169, 70–75. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, M.; Wu, K.; Yao, S.; Du, X.; Chen, G.; Zhang, Q.; Liang, L.; Lu, M. Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4. Compos. Sci. Technol. 2019, 174, 1–10. [Google Scholar] [CrossRef]
- Liang, C.; Song, P.; Ma, A.; Shi, X.; Gu, H.; Wang, L.; Qiu, H.; Kong, J.; Gu, J. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos. Sci. Technol. 2019, 181, 107683. [Google Scholar] [CrossRef]
- Yang, J.; Liao, X.; Li, J.; He, G.; Zhang, Y.; Tang, W.; Wang, G.; Li, G. Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption. Compos. Sci. Technol. 2019, 181, 107670. [Google Scholar] [CrossRef]
- Shu, X.; Fang, B.; Wu, W.; Song, Y.; Zhao, Z. Acicular or octahedral Fe3O4/rice husk-based activated carbon composites through graphitization synthesis as superior electromagnetic wave absorbers. Compos.-A Appl. Sci. 2021, 151, 106635. [Google Scholar] [CrossRef]
- Shu, X.; Cheng, J.; Fang, B.; Wang, J.; Song, Y.; Lu, W.; Zhao, Z. Morphology-dependent magnetic role of ZIFs in nitrogen-doped MXene as metallic conductor microwave absorber. J. Chem. Eng. 2023, 474, 145817. [Google Scholar] [CrossRef]
- Shu, X.; Yan, S.C.; Fang, B.; Song, Y.; Zhao, Z. A 3D multifunctional nitrogen-doped RGO-based aerogel with silver nanowires assisted self-supporting networks for enhanced electromagnetic wave absorption. J. Chem. Eng. 2023, 451, 138825. [Google Scholar] [CrossRef]
Material | Reinforcement and Matrix Thickness | EMI Shielding Effectiveness | Frequency | |
---|---|---|---|---|
Bamboo charcoal/HMWPE/LLDPE composite | 3 mm, 140 mm | 48.7 dB | 1500 MHz | [39] |
Pine chip/PLA composite | 0.25 mm | >32 dB | 18–26.5 GHz | [4] |
MXene aerogel/WPC composite | 3 mm | 71.3 dB | 8.5–12.5 GHz | [1] |
Gypsum–biochar drywall-like composite | >2 mm | 11.65 ± 1.6 dB, 19.2 ± 5.7 dB, and 19.25 ± 1.8 dB for 10, 20, and 40% w/w biochar contents | 6 GHz | [43] |
Drywall panels coated with commercial wood biochar | 10 mm | 17 dB 25 dB | 1 GHz 18 GHz | [47] |
Cement-based/commercial lignin-derived biochar/PVC composite | 4 mm | 16 dB | 5.4–8 GHz | [48] |
EBC@CNF@MWCNT composite | ~8 mm | >32 dB | 8–12 GHz | [36] |
Olive tree-derived biochar/polytetrafluoroethylene composite | 0.1–0.5 mm | 39 dB | 1–3 GHz | [49] |
Apple and quince biowaste-based biochars | 0.2 mm | 15.5 dB | 8–12 GHz | [50] |
Ricinus communis outer shell-based biochar/epoxy composite | 0.15 mm | 26.5 dB | 8–12 GHz | [37] |
18 wt.% lignin-based biochar/cementitious composite | 4 mm | 15 dB | 10 GHz | [57] |
Cashew shell biochar/carbon fiber-reinforced epoxy resin composite | not reported | −48.6 dB | 18 GHz | [58] |
Jackfruit rag biochar/waste silk fiber-reinforced vinyl ester composite | not reported | 31.5 dB 47.25 dB 63 dB 68.25 dB | 8 GHz 12 GHz 16 GHz 18 GHz | [59] |
Cellulose scaffold/AgNP composite | 1 mm | 69.1 dB | 8.2–12.4 GHz | [52] |
Carbon scaffold/polyurethane/Fe3O4 NP composite | ~8 mm | 32 dB | 8.2–12.4 GHz | [53] |
Cellulose-paper-based scaffold/Fe3O4 NP composite | 1.3 mm | 1805.9 dB/cm2 g | 10.3 GHz | [54] |
3D cellulose scaffold/CNT/MXene composite | 0.25 mm | 29.3 dB | 18–26.5 GHz | [55] |
Hybrid scaffold coupled with high-quality graphene array/MXene-Co aerogel | 6 mm | 72.86 dB | 8.2–12.4 GHz | [56] |
3D-printed scaffold/CNTs | 10 mm | 35.9 dB | 8.2–12.4 GHz | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinković, D.; Dorontić, S.; Kepić, D.; Haddadi, K.; Yasir, M.; Nardin, B.; Jovanović, S. New Electromagnetic Interference Shielding Materials: Biochars, Scaffolds, Rare Earth, and Ferrite-Based Materials. Nanomaterials 2025, 15, 541. https://doi.org/10.3390/nano15070541
Marinković D, Dorontić S, Kepić D, Haddadi K, Yasir M, Nardin B, Jovanović S. New Electromagnetic Interference Shielding Materials: Biochars, Scaffolds, Rare Earth, and Ferrite-Based Materials. Nanomaterials. 2025; 15(7):541. https://doi.org/10.3390/nano15070541
Chicago/Turabian StyleMarinković, Dragana, Slađana Dorontić, Dejan Kepić, Kamel Haddadi, Muhammad Yasir, Blaž Nardin, and Svetlana Jovanović. 2025. "New Electromagnetic Interference Shielding Materials: Biochars, Scaffolds, Rare Earth, and Ferrite-Based Materials" Nanomaterials 15, no. 7: 541. https://doi.org/10.3390/nano15070541
APA StyleMarinković, D., Dorontić, S., Kepić, D., Haddadi, K., Yasir, M., Nardin, B., & Jovanović, S. (2025). New Electromagnetic Interference Shielding Materials: Biochars, Scaffolds, Rare Earth, and Ferrite-Based Materials. Nanomaterials, 15(7), 541. https://doi.org/10.3390/nano15070541