In Situ Anchored, Ultrasmall, Oxygen Vacancy-Rich TiO2−x on Carbonized Bacterial Cellulose for the Efficient Adsorption and Separation of Organic Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Purification of BC
2.3. Preparation of TiO2/BC and TiO2−x/CBC Adsorbents
2.4. Characterization
2.5. Evaluation of the Adsorption Activity
3. Results and Discussion
3.1. Material Characterization
3.2. Adsorption Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aramesh, N.; Bagheri, A.R.; Zhang, Z.; Yadollahi, B.; Lee, H.K. Polyoxometalate-based materials against environmental pollutants: A review, Coordin. Chem. Rev. 2024, 507, 215767. [Google Scholar] [CrossRef]
- Fallah, S.; Mamaghani, H.R.; Yegani, R.; Hajinajaf, N.; Pourabbas, B. Use of graphene substrates for wastewater treatment of textile industries. Adv. Compos. Hybrid Mater. 2020, 3, 187–193. [Google Scholar] [CrossRef]
- Xin, Z.; Duan, K.; Zhuo, Q.; He, Q.; Zhang, X.; Zheng, C.; Han, X.; Han, T.; Fu, Z.; Xu, X.; et al. Novel nanozyme Ag/Fe3O4@h-BN with peroxidase-mimicking and oxidase-mimicking activities for dye degradation, As(V) removal and detection. Chem. Eng. J. 2023, 461, 141589. [Google Scholar] [CrossRef]
- Hessel, C.; Allegre, C.; Maisseu, M.; Charbit, F.; Moulin, P. Guidelines and legislation for dye house effluents. J. Environ. Manag. 2007, 83, 171–180. [Google Scholar] [CrossRef]
- Bashir, A.; Malik, L.A.; Ahad, S.; Manzoor, T.; Bhat, M.A.; Dar, G.N.; Pandith, A.H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 2018, 17, 729–754. [Google Scholar] [CrossRef]
- Das, P.P.; Sharma, M.; Purkait, M.K. Recent progress on electrocoagulation process for wastewater treatment: A review. Sep. Purif. Technol. 2022, 292, 121058. [Google Scholar] [CrossRef]
- Wang, T.; Wang, W.; Hu, H.; Khu, S.-T. Effect of coagulation on bio-treatment of textile wastewater: Quantitative evaluation and application. J. Clean. Prod. 2021, 312, 127798. [Google Scholar] [CrossRef]
- Omer, A.S.; El Naeem, G.A.; Abd-Elhamid, A.I.; Farahat, O.O.M.; El-Bardan, A.A.; Soliman, H.M.A.; Nayl, A.A. Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: Characterization, kinetic and isotherm studies. J. Mater. Res. Technol. 2022, 19, 3241–3254. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, X.; Hu, S.; Sun, S.; Li, C. PDA@UiO-66-NH2-derived nitrogen and oxygen-doped hierarchical porous carbon for efficient adsorption of BPA and dyes. Sep. Purif. Technol. 2024, 343, 127169. [Google Scholar] [CrossRef]
- Tian, W.; Sun, H.; Duan, X.; Zhang, H.; Ren, Y.; Wang, S. Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. J. Hazard. Mater. 2020, 389, 121881. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, X.; Miao, Y.; Gao, B.; Shi, Y.; Zhao, J.; Tan, S.H. Eggplant biomass based porous carbon for fast and efficient dye adsorption from wastewater. Ind. Crop. Prod. 2022, 187, 115510. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Si, Y. Polydopamine functionalized superhydrophilic coconut shells biomass carbon for selective cationic dye methylene blue adsorption. Mater. Chem. Phys. 2022, 279, 125767. [Google Scholar] [CrossRef]
- Zhao, Z.; Lin, L.; Zhang, J.; Xu, B.; Ma, Y.; Li, J. A green approach to enhance the adsorption capacity: Synthesis of bamboo-based adsorbent by biological pretreatment. Ind. Crop. Prod. 2024, 213, 118388. [Google Scholar] [CrossRef]
- Sun, Z.; Qu, K.; Li, J.; Yang, S.; Yuan, B.; Huang, Z.; Guo, Z. Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adv. Compos. Hybrid Mater. 2021, 4, 1413–1424. [Google Scholar] [CrossRef]
- Wu, W.; Ni, M.; Feng, Q.; Zhou, Y.; Cui, Y.; Zhang, Y.; Xu, S.; Lin, L.; Zhou, M.; Li, Z. A wet bacterial cellulose film self-anchored by phosphotungstic acid: Flexible, quick-response and stable cycling performance for photochromic application. Mater. Design 2024, 238, 112613. [Google Scholar] [CrossRef]
- Araujo, I.M.S.; Silva, R.R.; Pacheco, G.; Lustri, W.R.; Tercjak, A.; Gutierrez, J.; Junior, J.R.S.; Azevedo, F.H.C.; Figueredo, G.S.; Vega, M.L.; et al. Hydrothermal synthesis of bacterial cellulose-copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohyd. Polym. 2018, 179, 341–349. [Google Scholar] [CrossRef]
- Rattanawongwiboon, T.; Khongbunya, N.; Namvijit, K.; Lertsarawut, P.; Laksee, S.; Hemvichian, K.; Madrid, J.F.; Ummartyotin, S. Eco-friendly dye adsorbent from poly(vinyl amine) grafted onto bacterial cellulose sheet by using gamma radiation-induced simultaneous grafting and base hydrolysis. J. Polym. Environ. 2023, 32, 3048–3060. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; He, H.; Pei, C.; He, P. A novel reusable nanocomposite: FeOOH/CBC and its adsorptive property for methyl orange. Appl. Surf. Sci. 2015, 332, 456–462. [Google Scholar] [CrossRef]
- Huo, M.; Jin, Y.; Sun, Z.; Ren, F.; Pei, L.; Ren, P. Facile synthesis of chitosan-based acid-resistant composite films for efficient selective adsorption properties towards anionic dyes. Carbohyd. Polym. 2021, 254, 117473. [Google Scholar] [CrossRef]
- Gnanasekaran, G.; Sudhakaran, M.S.P.; Kulmatova, D.; Han, J.; Arthanareeswaran, G.; Jwa, E.; Mok, Y.S. Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane. Chemosphere 2021, 284, 131244. [Google Scholar] [CrossRef]
- Vinothkumar, K.; Jyothi, M.S.; Lavanya, C.; Sakar, M.; Valiyaveettil, S.; Balakrishna, R.G. Strongly co-ordinated MOF-PSF matrix for selective adsorption, separation and photodegradation of dyes. Chem. Eng. J. 2022, 428, 132561. [Google Scholar] [CrossRef]
- Sun, M.; Ma, Y.; Tan, H.; Yan, J.; Zang, H.; Shi, H.; Wang, Y.; Li, Y. Lanthanum molybdenum oxide as a new platform for highly selective adsorption and fast separation of organic dyes. RSC Adv. 2016, 6, 90010–90017. [Google Scholar] [CrossRef]
- Du, X.; Wang, C.; Liu, J.; Zhao, X.; Zhong, J.; Li, Y.; Li, J.; Wang, P. Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. J. Colloid Interface Sci. 2017, 506, 437–441. [Google Scholar] [CrossRef]
- Ji, L.; Luo, L.; Jin, D.; Qin, X. Preparation of aligned porous carbon microtubes by a reactant permeation template method and the highly selective adsorption of methylene blue dye from wastewater. Sep. Purif. Technol. 2024, 332, 125884. [Google Scholar] [CrossRef]
- Al-Amrani, W.A.; Onaizi, S.A. Adsorptive removal of heavy metals from wastewater using emerging nanostructured materials: A state-of-the-art review. Sep. Purif. Technol. 2024, 343, 127018. [Google Scholar] [CrossRef]
- Kumari, N.; Mahata, A.; Chakraborty, B. Immobilization of phosphamide on the TiO2 surface for heterogeneous phase catalytic appel reaction. Inorg. Chem. 2023, 62, 7728–7737. [Google Scholar] [CrossRef]
- Guo, Q.; Ma, Z.; Zhou, C.; Ren, Z.; Yang, X. Single molecule photocatalysis on TiO2 surfaces. Chem. Rev. 2019, 119, 11020–11041. [Google Scholar] [CrossRef]
- Xie, A.; Martínez-Vargas, D.R.; Yang, Z.; Zou, S. Efficient selenate removal from impaired waters with TiO2-assisted electrocatalysis. Water Res. 2024, 262, 122134. [Google Scholar] [CrossRef]
- Huo, H.; Su, H.; Tan, T. The influence of trace TiO2 on adsorption of Ag+-imprinted adsorbents made from chitosan and mycelium. Biotechnol. Bioproc. Eng. 2008, 13, 77–83. [Google Scholar] [CrossRef]
- Poudel, B.R.; Aryal, R.L.; Bhattarai, S.; Koirala, A.R.; Gautam, S.K.; Ghimire, K.N.; Pant, B.; Park, M.; Paudyal, H.; Pokhrel, M.R. Agro-waste derived biomass impregnated with TiO2 as a potential adsorbent for removal of As(III) from water. Catalysts 2020, 10, 1125. [Google Scholar] [CrossRef]
- Adesina, M.O.; Block, I.; Gunter, C.; Unuabonah, E.I.; Taubert, A. Efficient removal of tetracycline and bisphenol a from water with a new hybrid clay/TiO2 composite. ACS Omega 2023, 8, 21594–21604. [Google Scholar] [CrossRef]
- Wang, R.; Cai, X.; Shen, F. TiO2 hollow microspheres with mesoporous surface: Superior adsorption performance for dye removal. Appl. Surf. Sci. 2014, 305, 352–358. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Shi, Y.; Zhang, Y. Structure-dependent adsorptive or photocatalytic performances of solid and hollow dendritic mesoporous silica & titania nanospheres. Micropor. Mesopor. Mater. 2020, 305, 110326. [Google Scholar] [CrossRef]
- Su, J.; Lu, H.; Wang, F.; Lu, Y.; Zhang, R.; Xiao, J.; Cui, Y.; Zhu, L. High-efficient, broad-spectrum and recyclable mesoporous TiO2 adsorbent for water treatment. Micropor. Mesopor. Mater. 2021, 325, 111345. [Google Scholar] [CrossRef]
- Sattarfard, R.; Behnajady, M.A.; Eskandarloo, H. Hydrothermal synthesis of mesoporous TiO2 nanotubes and their adsorption affinity toward Basic Violet 2. J. Porous Mater. 2017, 25, 359–371. [Google Scholar] [CrossRef]
- Xie, G.; Wang, L.; Zhu, Q.; Chu, Z.; Tian, S.; Gui, Z.; Song, K.; Yu, Z. Regulating alkyl chain length on quaternization TiO2 for boosting photocatalytic performance: Synergism of promoting photogenerated charge separation and improving reactant adsorption. ACS Appl. Mater. Interfaces 2022, 14, 57428–57439. [Google Scholar] [CrossRef]
- Shabir, M.; Shezad, N.; Shafiq, I.; Maafa, I.M.; Akhter, P.; Azam, K.; Ahmed, A.; Lee, S.H.; Park, Y.-K.; Hussain, M. Carbon nanotubes loaded N,S-codoped TiO2: Heterojunction assembly for enhanced integrated adsorptive-photocatalytic performance. J. Ind. Eng. Chem. 2022, 105, 539–548. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, X.; Li, J.; Sun, H.; Zhang, H.; Wang, W. Electrospinning preparation and dye adsorption capacity of TiO2@Carbon flexible fiber. Ceram. Int. 2019, 45, 11856–11860. [Google Scholar] [CrossRef]
- Bibi, S.; Bibi, F.; Amir, A.; Mazhar, D.; Waseem, M. Selective uptake of cationic dyes by microemulsion driven Ag2O/TiO2 nanocomposites. Chem. Pap. 2023, 78, 1791–1804. [Google Scholar] [CrossRef]
- Chen, L.; Lei, J.; Tian, L.; Lv, K.; Jin, S. Schottky construction of bimetallic Au-Cu alloy@TiO2 hollow nanoboxes embedded optical switch for enhancing photocatalytic and selective adsorption activities via one-pot deposition-precipitation strategy. J. Alloys Compd. 2023, 943, 168978. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, J.; Hou, C.; Liu, Y.; Xu, S.; Yao, C.; Li, Z. Organic-free synthesis of porous CdS sheets with controlled windows size on bacterial cellulose for photocatalytic degradation and H2 production. App. Surf. Sci. 2019, 470, 908–916. [Google Scholar] [CrossRef]
- Li, T.; Liu, L.; Zhang, Z.; Han, Z. Preparation of nanofibrous metal-organic framework filter for rapid adsorption and selective separation of cationic dye from aqueous solution. Sep. Purif. Technol. 2020, 237, 116360. [Google Scholar] [CrossRef]
- Kumari, S.; Khan, A.A.; Chowdhury, A.; Bhakta, A.K.; Mekhalif, Z.; Hussain, S. Efficient and highly selective adsorption of cationic dyes and removal of ciprofloxacin antibiotic by surface modified nickel sulfide nanomaterials: Kinetics, isotherm and adsorption mechanism. Colloids Surf. A 2020, 586, 124264. [Google Scholar] [CrossRef]
- Abd-Elhamid, A.I.; Ali, H.H.; Nayl, A.A. Modification of sugarcane bagasse as a novel lignocellulosic biomass adsorbent nanocomposite to improve adsorption of methylene blue. Cellulose 2023, 30, 5239–5258. [Google Scholar] [CrossRef]
- Watanabe, T.; Takawane, S.; Baba, Y.; Akaiwa, J.; Kondo, A.; Ohba, T. Superior thermal stability and high photocatalytic activity of titanium dioxide nanocatalysts in carbon nanotubes. J. Phys. Chem. C 2023, 127, 16861–16869. [Google Scholar]
- Ye, S.; Cheng, C.; Wang, S.; Xie, R.; Wang, D. Carbon-regulated titania crystallization to construct a comprehensive palette of anatase/rutile mixed phases for advanced photocatalysis. Mater. Chem. Front. 2023, 7, 3693–3705. [Google Scholar] [CrossRef]
- Feng, Q.; Wu, W.; Cui, Y.; Zhou, Y.; Zhang, Y.; Xu, S.; Lin, L.; Zhou, M.; Li, Z. Reversible wettability control of self-assembled TiO2 scaffolds on bacterial cellulose from superhydrophobicity to superhydrophilicity. Cellulose 2024, 31, 2907–2920. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, D.; Liu, X.; Pei, X.; Chen, L.; Jin, J. Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J. Mater. Chem. A 2014, 2, 5034–5040. [Google Scholar] [CrossRef]
- Cao, N.; Zhao, X.; Gao, M.; Li, Z.; Ding, X.; Li, C.; Liu, K.; Du, X.; Li, W.; Feng, J.; et al. Superior selective adsorption of MgO with abundant oxygen vacancies to removal and recycle reactive dyes. Sep. Purif. Technol. 2021, 275, 119236. [Google Scholar] [CrossRef]
- Wang, Q.; Ju, J.; Tan, Y.; Hao, L.; Ma, Y.; Wu, Y.; Zhang, H.; Xia, Y.; Sui, K. Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohyd. Polym. 2019, 205, 125–134. [Google Scholar] [CrossRef]
- Yang, Q.; Ren, S.; Zhao, Q.; Lu, R.; Hang, C.; Chen, Z.; Zheng, H. Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem. Eng. J. 2018, 333, 49–57. [Google Scholar] [CrossRef]
- Mohammed, N.; Lian, H.; Islam, M.S.; Strong, M.; Shi, Z.; Berry, R.M.; Yu, H.; Tam, K.C. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chem. Eng. J. 2021, 417, 129237. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Lau, S.Y.; Danquah, M.K.; Zhang, J.; Chiong, T.; Obayomi, O.V.; Meunier, L.; Rahman, M.M. A response surface methodology approach for the removal of methylene blue dye from wastewater using sustainable and cost-effective adsorbent. Process Saf. Environ. 2024, 184, 129–150. [Google Scholar] [CrossRef]
- Tu, M.; Yu, J.; Wang, J.; Shi, X.; Fu, Z.; Hu, S.; Zhong, M.; Fei, Z. Coral-like TiO2/organosilane hybrid particles with rapid adsorption of methyl orange. Sep. Purif. Technol. 2022, 309, 123000. [Google Scholar] [CrossRef]
- Jaseela, P.K.; Garvasis, J.; Joseph, A. Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2)—Poly vinyl alcohol (PVA) nanocomposite. J. Mol. Liq. 2019, 286, 110908. [Google Scholar] [CrossRef]
- Thuy, L.T.T.; Thuy, P.T.; Anh, P.T.G.; Tien, N.A.; Bich, N.T.H.; Khieu, D.Q. Simultaneous adsorption of malachite green, methyl orange, and rhodamine B with TiO2/macadamia nutshells-derived activated carbon composite. Mater. Res. Express 2023, 10, 125602. [Google Scholar] [CrossRef]
- Zeng, X.; Lu, M.; Xu, Z.; Lin, Z.; Fan, F.; Xia, Y.; Li, W.; Zhang, M.; Chen, T.; Zhou, C. Facile fabrication of superhydrophilic copper foam for rapid and efficient filtration of cationic dyes from water. Sep. Purif. Technol. 2024, 354, 128943. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Zhou, Y.; Ni, M.; Zhang, Y.; Xu, S.; Ma, H.; Zhou, J.; Zhao, J.; Lin, L.; Li, Z. In Situ Anchored, Ultrasmall, Oxygen Vacancy-Rich TiO2−x on Carbonized Bacterial Cellulose for the Efficient Adsorption and Separation of Organic Pollutants. Nanomaterials 2025, 15, 514. https://doi.org/10.3390/nano15070514
Zhou M, Zhou Y, Ni M, Zhang Y, Xu S, Ma H, Zhou J, Zhao J, Lin L, Li Z. In Situ Anchored, Ultrasmall, Oxygen Vacancy-Rich TiO2−x on Carbonized Bacterial Cellulose for the Efficient Adsorption and Separation of Organic Pollutants. Nanomaterials. 2025; 15(7):514. https://doi.org/10.3390/nano15070514
Chicago/Turabian StyleZhou, Man, Yanli Zhou, Minmin Ni, Yuzhe Zhang, Song Xu, Hao Ma, Jian Zhou, Jin Zhao, Liwei Lin, and Zhongyu Li. 2025. "In Situ Anchored, Ultrasmall, Oxygen Vacancy-Rich TiO2−x on Carbonized Bacterial Cellulose for the Efficient Adsorption and Separation of Organic Pollutants" Nanomaterials 15, no. 7: 514. https://doi.org/10.3390/nano15070514
APA StyleZhou, M., Zhou, Y., Ni, M., Zhang, Y., Xu, S., Ma, H., Zhou, J., Zhao, J., Lin, L., & Li, Z. (2025). In Situ Anchored, Ultrasmall, Oxygen Vacancy-Rich TiO2−x on Carbonized Bacterial Cellulose for the Efficient Adsorption and Separation of Organic Pollutants. Nanomaterials, 15(7), 514. https://doi.org/10.3390/nano15070514