Zhou, M.; Zhou, Y.; Ni, M.; Zhang, Y.; Xu, S.; Ma, H.; Zhou, J.; Zhao, J.; Lin, L.; Li, Z.
In Situ Anchored, Ultrasmall, Oxygen Vacancy-Rich TiO2−x on Carbonized Bacterial Cellulose for the Efficient Adsorption and Separation of Organic Pollutants. Nanomaterials 2025, 15, 514.
https://doi.org/10.3390/nano15070514
AMA Style
Zhou M, Zhou Y, Ni M, Zhang Y, Xu S, Ma H, Zhou J, Zhao J, Lin L, Li Z.
In Situ Anchored, Ultrasmall, Oxygen Vacancy-Rich TiO2−x on Carbonized Bacterial Cellulose for the Efficient Adsorption and Separation of Organic Pollutants. Nanomaterials. 2025; 15(7):514.
https://doi.org/10.3390/nano15070514
Chicago/Turabian Style
Zhou, Man, Yanli Zhou, Minmin Ni, Yuzhe Zhang, Song Xu, Hao Ma, Jian Zhou, Jin Zhao, Liwei Lin, and Zhongyu Li.
2025. "In Situ Anchored, Ultrasmall, Oxygen Vacancy-Rich TiO2−x on Carbonized Bacterial Cellulose for the Efficient Adsorption and Separation of Organic Pollutants" Nanomaterials 15, no. 7: 514.
https://doi.org/10.3390/nano15070514
APA Style
Zhou, M., Zhou, Y., Ni, M., Zhang, Y., Xu, S., Ma, H., Zhou, J., Zhao, J., Lin, L., & Li, Z.
(2025). In Situ Anchored, Ultrasmall, Oxygen Vacancy-Rich TiO2−x on Carbonized Bacterial Cellulose for the Efficient Adsorption and Separation of Organic Pollutants. Nanomaterials, 15(7), 514.
https://doi.org/10.3390/nano15070514