Towards MRI Study of Biointegration of Carbon-Carbon Composites with Ca-P Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Techniques of Coating Deposition and Their Characterization
2.2. Animal Implantation and Ex Vivo Sample Preparation
- -
- Autopsy of uncoated C-C composites at week 6 post-implantation;
- -
- Autopsy of uncoated C-C composites at week 12;
- -
- Autopsy of Ca-P coated (electrophoretic deposition) C-C composites at week 6 post- implantation;
- -
- Autopsy of Ca-P coated (electrophoretic deposition) C-C composites at week 12 post- implantation;
- -
- Autopsy of Ca-P coated (detonation spraying) C-C composites at week 6 post-implantation;
- -
- Autopsy of Ca-P coated (detonation spraying) C-C composites at week 12 post-implantation.
2.3. MRI Scanning of Ex Vivo Samples
2.4. MIP Analysis for MR Images
2.5. Statistical Analysis
3. Results
3.1. Morphology of Composite Substrates and Deposited Coatings
3.2. MIP Analysis
3.2.1. Uncoated C-C Composites
3.2.2. Ca-P Electrophoretic Deposition
3.2.3. Ca-P Detonation Spraying
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amirtharaj Mosas, K.K.; Chandrasekar, A.R.; Dasan, A.; Pakseresht, A.; Galusek, D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022, 8, 323. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R. Biomedical Materials, 3rd ed.; Springer Science + Business Media: New York, NY, USA, 2009; pp. 123–154. [Google Scholar]
- Tan, Z.; Zhang, X.; Ruan, J.; Liao, J.; Yu, F.; Xia, L.; Wang, B.; Liang, C. Synthesis, structure, and properties of carbon/carbon composites artificial rib for chest wall reconstruction. Sci. Rep. 2021, 11, 11285. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.M.; Bhashyam, A.R.; Patel, S.S.; Ortiz-Cruz, E.; Lozano-Calderón, S.A. Carbon Fiber Implants in Orthopaedic Oncology. J. Clin. Med. 2022, 11, 4959. [Google Scholar] [CrossRef] [PubMed]
- Llamas-Unzueta, R.; Suárez, M.; Fernández, A.; Díaz, R.; Montes-Morán, M.A.; Menéndez, J.A. Whey-Derived Porous Carbon Scaffolds for Bone Tissue Engineering. Biomedicines 2021, 9, 1091. [Google Scholar] [CrossRef]
- Li, J.L.; Cai, Y.L.; Guo, Y.L.; Fuh, J.Y.; Sun, J.; Hong, G.S.; Lam, R.N.; Wong, Y.S.; Wang, W.; Tay, B.Y.; et al. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 651–658. [Google Scholar] [CrossRef]
- Montazerian, M.; Hosseinzadeh, F.; Migneco, C.; Fook, M.V.L.; Baino, F. Bioceramic coatings on metallic implants: An overview. Ceram. Int. 2022, 48, 8987–9005. [Google Scholar] [CrossRef]
- Roy, M.; Bandyopadhyay, A.; Bose, S. Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants. Acta Biomater. 2008, 4, 324–333. [Google Scholar] [CrossRef]
- Drevet, R.; Fauré, J.; Benhayoune, H. Bioactive Calcium Phosphate Coatings for Bone Implant Applications: A Review. Coatings 2023, 13, 1091. [Google Scholar] [CrossRef]
- Barinov, S.M. Ceramic and composite materials based on calcium phosphates for medicine. Adv. Chem. 2010, 79, 15–30. [Google Scholar] [CrossRef]
- Chazono, M.; Tanaka, T.; Komaki, H.; Fujii, K. Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J. Biomed. Mater. Res. A 2004, 70, 542–549. [Google Scholar] [CrossRef]
- Li, C.; Qin, W.; Lakshmanan, S.; Ma, X.; Sun, X.; Xu, B. Hydroxyapatite based biocomposite scaffold: A highly biocompatible material for bone regeneration. Saudi J. Biol. Sci. 2020, 27, 2143–2148. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Mobarakeh, L.; Kolahreez, D.; Ramakrishna, S.; Williams, D. Key terminology in biomaterials and biocompatibility. Curr. Opin. Biomed. Eng. 2019, 10, 45–50. [Google Scholar] [CrossRef]
- Yamasaki, H.; Sakai, H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials 1992, 13, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Sorrell, C.C.; Taib, H.; Palmer, T.C.; Peng, F.; Xia, Z.; Wei, M. Hydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition. In Biological and Biomedical Coatings Handbook, 1st ed.; Zhang, S., Ed.; CRC Press: Boca Raton, FL, USA, 2011; Volume 3, pp. 80–136. [Google Scholar] [CrossRef]
- Skryabin, A.S.; Tsygankov, P.A.; Vesnin, V.R.; Parshin, B.A.; Zaitsev, V.V.; Lukina, Y.S. Physicochemical Properties and Osseointegration of Titanium Implants with Bioactive Calcium Phosphate Coatings Produced by Detonation Spraying. Inorg. Mater. 2022, 58, 71–77. [Google Scholar] [CrossRef]
- Ahmad, T.; Khan, S.; Ullah, N. Recent Advances in the Catalytic Asymmetric Friedel-Crafts Reactions of Indoles. ACS Omega 2022, 7, 35446–35485. [Google Scholar] [CrossRef]
- Espiritu, J.; Meier, M.; Seitz, J.-M. The current performance of biodegradable magnesium-based implants in magnetic resonance imaging: A review. Bioact. Mater. 2021, 6, 4360–4367. [Google Scholar] [CrossRef]
- Sas, W.; Jasiurkowska-Delaporte, M.; Czaja, P.; Zieliński, P.M.; Fitta, M. Magnetic Properties Study of Iron Oxide Nanoparticles-Loaded Poly(ε-caprolactone) Nanofibres. Magnetochemistry 2021, 7, 61. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, L.; Chen, Z.; Lan, Y.; Liu, Y.; Li, D.; Yan, C.; Xu, Y. Ultrasmall Superparamagnetic Iron Oxide Labeled Silk Fibroin/Hydroxyapatite Multifunctional Scaffold Loaded with Bone Marrow-Derived Mesenchymal Stem Cells for Bone Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 697. [Google Scholar] [CrossRef]
- Abarrategi, A.; Fernandez-Valle, M.E.; Desmet, T.; Castejón, D.; Civantos, A.; Moreno-Vicente, C.; Ramos, V.; Sanz-Casado, J.V.; Martínez-Vázquez, F.J.; Dubruel, P.; et al. Label-free magnetic resonance imaging to locate live cells in three-dimensional porous implants. J. R. Soc. Interface 2012, 9, 2321–2331. [Google Scholar] [CrossRef]
- Leferink, A.M.; Fratila, R.M.; Koenrades, M.A.; Blitterswijk, C.A.; Velders, A.; Moroni, L. An Open Source Image Processing Method to Quantitatively Assess Tissue Growth after Non-Invasive Magnetic Resonance Imaging in Human Bone Marrow Stromal Cell Seeded 3D Polymeric Implants. PLoS ONE 2014, 9, e115000. [Google Scholar] [CrossRef]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, F.F.; Barr, R.G.; Yokoo, T.; Ferraioli, G.; Lee, J.T.; Dillman, J.R.; Horowitz, J.M.; Jhaveri, K.S.; Miller, F.H.; Modi, R.Y.; et al. Liver Fibrosis, Fat, and Iron Evaluation with MRI and Fibrosis and Fat Evaluation with US: A Practical Guide for Radiologists. Radiographics 2023, 43, e220181. [Google Scholar] [CrossRef] [PubMed]
- Ordovas, K.G.; Higgins, C.B. Delayed contrast enhancement on MR images of myocardium: Past, present, future. Radiology 2011, 261, 358–374. [Google Scholar] [CrossRef] [PubMed]
- Kader, A.; Kaufmann, J.O.; Mangarova, D.B.; Moeckel, J.; Adams, L.C.; Brangsch, J.; Heyl, J.L.; Zhao, J.; Verlemann, C.; Karst, U.; et al. Collagen-Specific Molecular Magnetic Resonance Imaging of Prostate Cancer. Int. J. Mol. Sci. 2023, 24, 711. [Google Scholar] [CrossRef]
- Skriabin, A.S.; Tsygankov, P.A.; Vesnin, V.R.; Shakurov, A.V.; Skriabina, E.S.; Sviridova, I.K.; Sergeeva, N.S.; Kirsanova, V.A.; Akhmedova, S.A.; Zherdeva, V.V.; et al. Electrophoretic Deposition of Calcium Phosphates on Carbon-Carbon Composite Implants: Morphology, Phase/Chemical Composition and Biological Reactions. Int. J. Mol. Sci. 2024, 25, 3375. [Google Scholar] [CrossRef]
- ISO 13779-2:2018; State Standard: Implants for Surgery—Hydroxyapatite. Part 4: Determination of Coating Adhesion Strength. Standartinform: Moscow, Russia, 2018.
- Haidekker, M. Advanced Biomedical Image Analysis, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 236–275. [Google Scholar]
- DeBonis, M.J. Vector Spaces. In Introduction to Linear Algebra: Computation, Application, and Theory, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2022; Volume 3, pp. 118–188. [Google Scholar] [CrossRef]
- Ha, S.W.; Mayer, J.; Koch, B.; Wintermantel, E. Plasma-sprayed hydroxylapatite coating on carbon fibre reinforced thermoplastic composite materials. J. Mater. Sci. Mater. Med. 1994, 5, 481–484. [Google Scholar] [CrossRef]
- Carnicer-Lombarte, A.; Chen, S.-T.; Malliaras, G.G.; Barone, D.G. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front. Bioeng. Biotechnol. 2021, 9, 622524. [Google Scholar] [CrossRef]
- Lahna, D.; Roese, N.; Woltjer, R.; Boespflug, E.L.; Schwartz, D.; Grinstead, J.; Dodge, H.H.; Wall, R.; Kaye, J.A.; Rooney, W.D.; et al. Postmortem 7T MRI for guided histopathology and evaluation of cerebrovascular disease. J. Neuropathol. Exp. Neurol. 2022, 82, 57–70. [Google Scholar] [CrossRef]
- Baranov, M.V.; Kumar, M.; Sacanna, S.; Thutupalli, S.; Bogaart, G. Modulation of Immune Responses by Particle Size and SCa-Pe. Front. Immunol. 2021, 11, 607945. [Google Scholar] [CrossRef]
- Majhy, B.; Priyadarshinia, P.; Sen, A.K. Effect of surface energy and roughness on cell adhesion and growth—Facile surface modification for enhanced cell culture. RSC Adv. 2021, 11, 15467–15476. [Google Scholar] [CrossRef]
- Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A.; et al. Metallic Biomaterials: Current Challenges and Opportunities. Materials 2017, 10, 884. [Google Scholar] [CrossRef] [PubMed]
- Al-Zyoud, W.; Haddadin, D.; Hasan, S.A.; Jaradat, H.; Kanoun, O. Biocompatibility Testing for Implants: A Novel Tool for Selection and Characterization. Materials 2023, 16, 6881. [Google Scholar] [CrossRef] [PubMed]
- Prodan, A.-M.; Ciobanu, C.-S.; Popa, C.-l.; Iconaru, S.-L.; Predoi, D. Toxicity Evaluation following Intratracheal Instillation of Iron Oxide in a Silica Matrix in Rats. BioMed Res. Int. 2014, 2014, 134260. [Google Scholar] [CrossRef] [PubMed]
- Predoi, S.-A.; Iconaru, S.L.; Predoi, D. In Vitro and In Vivo Biological Assays of Dex-tran Coated Iron Oxide Aqueous Magnetic Fluids. Pharmaceutics 2023, 15, 177. [Google Scholar] [CrossRef]
- Prodan, A.-M.; Iconaru, S.-L.; Ciobanu, C.-S.; Chifiriuc, M.-C.; Stoicea, M.; Predoi, D. Iron Oxide Magnetic Nanoparticles: Characterization and Toxicity Evaluation by In Vitro and In Vivo Assays. J. Nanomater. 2013, 2013, 587021. [Google Scholar] [CrossRef]
- Bouazizi, K.; Zarai, M.; Marquet, F.; Aron-Wisnewsky, J.; Clément, K.; Redheuil, A.; Kachenoura, N. Adipose tissue fibrosis assessed by high resolution ex vivo MRI as a hallmark of tissue alteration in morbid obesity. Quant. Imaging Med. Surg. 2021, 11, 2162–2168. [Google Scholar] [CrossRef]
- Maloshenok, L.; Abushinova, G.; Kazachkina, N.; Bogdanov, A., Jr.; Zherdeva, V. Tet-Regulated Expression and Optical Clearing for In Vivo Visualization of Genetically Encoded Chimeric dCas9/Fluorescent Protein Probes. Materials 2023, 16, 940. [Google Scholar] [CrossRef]
- Kazachkina, N.I.; Zherdeva, V.V.; Meerovich, I.G.; Saydasheva, A.N.; Solovyev, I.D.; Tuchina, D.K.; Savitsky, A.P.; Tuchin, V.V.; Bogdanov, A.A., Jr. MR and fluorescence imaging of gadobutrol-induced optical clearing of red fluorescent protein signal in an in vivo cancer model. NMR Biomed. 2022, 35, e4708. [Google Scholar] [CrossRef]
- Wang, R.K.; Tuchin, V.V. Enhance light penetration in tissue for high-resolution optical imaging techniques by the use of biocompatible chemical agents. J. X-ray Sci. Technol. 2002, 10, 167–176. [Google Scholar] [CrossRef]
- Laurino, A.; Franceschini, A.; Pesce, L.; Cinci, L.; Montalbano, A.; Mazzamuto, G.; San-cataldo, G.; Nesi, G.; Costantini, I.; Silvestri, L.; et al. A Guide to Perform 3D Histology of Biological Tissues with Fluorescence Microscopy. Int. J. Mol. Sci. 2023, 24, 6747. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zherdeva, V.V.; Zaitsev, P.E.; Skriabin, A.S.; Shakurov, A.V.; Vesnin, V.R.; Skriabina, E.S.; Tsygankov, P.A.; Sviridova, I.K.; Sergeeva, N.S.; Kirsanova, V.A.; et al. Towards MRI Study of Biointegration of Carbon-Carbon Composites with Ca-P Coatings. Nanomaterials 2025, 15, 492. https://doi.org/10.3390/nano15070492
Zherdeva VV, Zaitsev PE, Skriabin AS, Shakurov AV, Vesnin VR, Skriabina ES, Tsygankov PA, Sviridova IK, Sergeeva NS, Kirsanova VA, et al. Towards MRI Study of Biointegration of Carbon-Carbon Composites with Ca-P Coatings. Nanomaterials. 2025; 15(7):492. https://doi.org/10.3390/nano15070492
Chicago/Turabian StyleZherdeva, Victoria V., Petr E. Zaitsev, Andrei S. Skriabin, Alexey V. Shakurov, Vladimir R. Vesnin, Elizaveta S. Skriabina, Petr A. Tsygankov, Irina K. Sviridova, Natalia S. Sergeeva, Valentina A. Kirsanova, and et al. 2025. "Towards MRI Study of Biointegration of Carbon-Carbon Composites with Ca-P Coatings" Nanomaterials 15, no. 7: 492. https://doi.org/10.3390/nano15070492
APA StyleZherdeva, V. V., Zaitsev, P. E., Skriabin, A. S., Shakurov, A. V., Vesnin, V. R., Skriabina, E. S., Tsygankov, P. A., Sviridova, I. K., Sergeeva, N. S., Kirsanova, V. A., Akhmedova, S. A., & Serejnikova, N. B. (2025). Towards MRI Study of Biointegration of Carbon-Carbon Composites with Ca-P Coatings. Nanomaterials, 15(7), 492. https://doi.org/10.3390/nano15070492