Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces
Abstract
:1. Introduction
2. Principle of Metasurface Design
2.1. Overview of Principle
2.2. Theoretical Analysis of Metasurface-Generated Higher-Order Poincaré Beams
3. Simulations and Numerical Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coullet, P.; Gil, L.; Rocca, F. Optical vortices. Opt. Commun. 1989, 73, 403–408. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Jiang, W.; Guo, L.; Li, J.; Forbes, A. Metrology with a twist: Probing and sensing with vortex light. Light Sci. Appl. 2025, 14, 4. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef]
- D’ambrosio, V.; Nagali, E.; Walborn, S.P.; Aolita, L.; Slussarenko, S.; Marrucci, L.; Sciarrino, F. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 2012, 3, 961. [Google Scholar] [CrossRef]
- Marrucci, L.; Karimi, E.; Slussarenko, S.; Piccirillo, B.; Santamato, E.; Nagali, E.; Sciarrino, F. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 2011, 13, 064001. [Google Scholar] [CrossRef]
- Ng, J.; Lin, Z.; Chan, C.T. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 2010, 104, 103601. [Google Scholar] [CrossRef]
- D’ambrosio, V.; Spagnolo, N.; Del Re, L.; Slussarenko, S.; Li, Y.; Kwek, L.C.; Marrucci, L.; Walborn, S.P.; Aolita, L.; Sciarrino, F. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 2013, 4, 2432. [Google Scholar] [CrossRef]
- Yoshida, M.; Kozawa, Y.; Sato, S. Subtraction imaging by the combination of higher-order vector beams for enhanced spatial resolution. Opt. Lett. 2019, 44, 883–886. [Google Scholar] [CrossRef]
- Wong, L.J.; Kärtner, F.X. Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam. Opt. Express 2010, 18, 25035–25051. [Google Scholar] [CrossRef]
- Graham, T.M.; Bernstein, H.J.; Wei, T.C.; Junge, M.; Kwiat, P.G. Superdense teleportation using hyperentangled photons. Nat. Commun. 2015, 6, 7185. [Google Scholar] [CrossRef]
- Shen, Y.; Yu, B.; Wu, H.; Li, C.; Zhu, Z.; Zayats, A.V. Topological transformation and free-space transport of photonic hopfions. Adv. Photonics 2023, 5, 015001. [Google Scholar] [CrossRef]
- Naidoo, D.; Roux, F.S.; Dudley, A.; Litvin, I.; Piccirillo, B.; Marrucci, L.; Forbes, A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics 2016, 10, 327–332. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Ma, L.; Zhang, Y.; Li, Z.; Zhang, R.; Zeng, X.; Zhan, Z.; He, C.; Ren, X.; et al. Flexible generation of higher-order Poincaré beams with high efficiency by manipulating the two eigenstates of polarized optical vortices. Opt. Express 2020, 28, 10618–10632. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, Y.; Liu, S.; Ma, C.; Han, L.; Cheng, H.; Zhao, J. Generation of perfect vectorial vortex beams. Opt. Lett. 2016, 41, 2205–2208. [Google Scholar] [CrossRef] [PubMed]
- Aieta, F.; Kats, M.A.; Genevet, P.; Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015, 347, 1342–1345. [Google Scholar] [CrossRef]
- Avayu, O.; Almeida, E.; Prior, Y.; Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 2017, 8, 14992. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, X.; Zhang, J. Active metamaterials and metadevices: A review. J. Phys. D Appl. Phys. 2020, 53, 503002. [Google Scholar] [CrossRef]
- Guo, X.; Zhong, J.; Li, B.; Qi, S.; Li, Y.; Li, P.; Wen, D.; Liu, S.; Wei, B.; Zhao, J. Full-color holographic display and encryption with full-polarization degree of freedom. Adv. Mater. 2022, 34, 2103192. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Mueller, J.B.; Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 2017, 358, 896–901. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, S.; Fan, Q.; Lu, Y.; Xu, T. Photonic spin-controlled generation and transformation of 3D optical polarization topologies enabled by all-dielectric metasurfaces. Nanoscale 2019, 11, 10646–10654. [Google Scholar] [CrossRef] [PubMed]
- Stav, T.; Faerman, A.; Maguid, E.; Oren, D.; Kleiner, V.; Hasman, E.; Segev, M. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 2018, 361, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 2011, 107, 053601. [Google Scholar] [CrossRef] [PubMed]
- Milione, G.; Evans, S.; Nolan, D.A.; Alfano, R.R. Higher order Pancharatnam-Berry phase and the angular momentum of light. Phys. Rev. Lett. 2012, 108, 190401. [Google Scholar] [CrossRef]
- Liu, M.; Huo, P.; Zhu, W.; Zhang, C.; Zhang, S.; Song, M.; Zhang, S.; Zhou, Q.; Chen, L.; Lezec, H.J.; et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun. 2021, 12, 2230. [Google Scholar] [CrossRef]
- Luo, L.; Liu, X.; Duan, S.; Li, H.; Xu, H.; Peng, S.; Liu, B.; Wang, Y.; Wang, L.; Zou, Y.; et al. Dual channel transformation of scalar and vector terahertz beams along the optical path based on dielectric metasurface. Nanophotonics 2023, 12, 3839–3848. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Yan, S.; Xu, X.; Wang, S.; Yao, B.; Wang, Z.; Zhu, S. Generation and conversion dynamics of dual Bessel beams with a photonic spin-dependent dielectric metasurface. Phys. Rev. Appl. 2021, 15, 014059. [Google Scholar] [CrossRef]
- Zang, H.; Zhou, X.; Yang, Z.; Yu, Q.; Zheng, C.; Yao, J. Polarization multiplexed multifunctional metasurface for generating longitudinally evolving vector vortex beams. Phys. Lett. A 2024, 497, 129336. [Google Scholar] [CrossRef]
- Yang, J.; Hakala, T.K.; Friberg, A.T. Generation of arbitrary vector Bessel beams on higher-order Poincaré spheres with an all-dielectric metasurface. Phys. Rev. A 2022, 106, 023520. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, R.; Li, Y.; Xiong, H.; Li, Y.; Li, X.; Li, J.; Wang, Y.; Huang, L. Generation of the Bessel Beam of Longitudinally Varied Polarization with Dielectric Metasurfaces. Adv. Opt. Mater. 2023, 11, 2202896. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, R.; Li, Y.; Tian, C.; Ji, X.; Li, X.; Li, J.; Wang, Y.; Huang, L. Transformation of longitudinally customizable curved vector vortex beams using dielectric metasurface. Laser Photonics Rev. 2024, 18, 2400226. [Google Scholar] [CrossRef]
- Li, H.; Duan, S.; Zheng, C.; Li, J.; Xu, H.; Song, C.; Yang, F.; Liu, Y.; Shi, W.; Zhang, Y.; et al. Longitudinal manipulation of scalar to vector vortex beams evolution empowered by all-silicon metasurfaces. Adv. Opt. Mater. 2023, 11, 2301368. [Google Scholar] [CrossRef]
- Xu, W.; Li, J.; Yao, J. Longitudinal evolution from scalar to vector beams assembled from all-dielectric metasurfaces. Opt. Lett. 2023, 48, 1606–1609. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Yue, Z.; Zheng, C.; Wang, G.; Liu, J.; Xu, H.; Song, C.; Yang, F.; Li, H.; et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces. Laser Photonics Rev. 2022, 16, 2200325. [Google Scholar] [CrossRef]
- Zheng, C.; Li, J.; Liu, J.; Li, J.; Yue, Z.; Li, H.; Yang, F.; Zhang, Y.; Zhang, Y.; Yao, J. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface. Laser Photonics Rev. 2022, 16, 2200236. [Google Scholar] [CrossRef]
- Zhang, F.; Pu, M.; Guo, Y.; Ma, X.; Li, X.; Gao, P.; Luo, X. Synthetic vector optical fields with spatial and temporal tenability. Sci. China Phys. Mech. Astron. 2022, 65, 254211. [Google Scholar] [CrossRef]
- He, X.; Bao, H.; Zhang, F.; Kang, T.; Pu, M.; Chen, Y.; Guo, Y.; Gong, J.; Xu, M.; Luo, X. Longitudinally continuous varying high-order cylindrical vector fields enabled by spin-decoupled metasurfaces. Nanophotonics 2021, 13, 1657–1664. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, M.; Cui, G.; Zhou, Y.; Dong, Q.; Gao, S.; Choi, D.Y.; Cheng, C.; Liu, C. Manipulations of vectorial-structured light by spatially interleaved metasurfaces of quarter-wave-plate meta-atoms. J. Light. Technol. 2024, 42, 6863–6873. [Google Scholar] [CrossRef]
- Gu, M.; Cheng, C.; Zhan, Z.; Zhang, Z.; Cui, G.; Zhou, Y.; Zeng, X.; Gao, S.; Choi, D.Y.; Cheng, C. Dielectric supercell metasurfaces for generating focused higher-order poincare beams with the residual copolarization component eliminated. ACS Photonics 2024, 11, 204–217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Ma, T.; Gu, M.; Dong, Q.; Zhou, H.; Wang, Y.; Wang, W.; Cheng, C.; Liu, C. Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces. Nanomaterials 2025, 15, 478. https://doi.org/10.3390/nano15070478
Zhao K, Ma T, Gu M, Dong Q, Zhou H, Wang Y, Wang W, Cheng C, Liu C. Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces. Nanomaterials. 2025; 15(7):478. https://doi.org/10.3390/nano15070478
Chicago/Turabian StyleZhao, Kaixin, Teng Ma, Manna Gu, Qingrui Dong, Haoyan Zhou, Yuantao Wang, Wenxin Wang, Chuanfu Cheng, and Chunxiang Liu. 2025. "Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces" Nanomaterials 15, no. 7: 478. https://doi.org/10.3390/nano15070478
APA StyleZhao, K., Ma, T., Gu, M., Dong, Q., Zhou, H., Wang, Y., Wang, W., Cheng, C., & Liu, C. (2025). Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces. Nanomaterials, 15(7), 478. https://doi.org/10.3390/nano15070478