Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces
Abstract
1. Introduction
2. Principle of Metasurface Design
2.1. Overview of Principle
2.2. Theoretical Analysis of Metasurface-Generated Higher-Order Poincaré Beams
3. Simulations and Numerical Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coullet, P.; Gil, L.; Rocca, F. Optical vortices. Opt. Commun. 1989, 73, 403–408. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Jiang, W.; Guo, L.; Li, J.; Forbes, A. Metrology with a twist: Probing and sensing with vortex light. Light Sci. Appl. 2025, 14, 4. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef]
- D’ambrosio, V.; Nagali, E.; Walborn, S.P.; Aolita, L.; Slussarenko, S.; Marrucci, L.; Sciarrino, F. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 2012, 3, 961. [Google Scholar] [CrossRef]
- Marrucci, L.; Karimi, E.; Slussarenko, S.; Piccirillo, B.; Santamato, E.; Nagali, E.; Sciarrino, F. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 2011, 13, 064001. [Google Scholar] [CrossRef]
- Ng, J.; Lin, Z.; Chan, C.T. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 2010, 104, 103601. [Google Scholar] [CrossRef]
- D’ambrosio, V.; Spagnolo, N.; Del Re, L.; Slussarenko, S.; Li, Y.; Kwek, L.C.; Marrucci, L.; Walborn, S.P.; Aolita, L.; Sciarrino, F. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 2013, 4, 2432. [Google Scholar] [CrossRef]
- Yoshida, M.; Kozawa, Y.; Sato, S. Subtraction imaging by the combination of higher-order vector beams for enhanced spatial resolution. Opt. Lett. 2019, 44, 883–886. [Google Scholar] [CrossRef]
- Wong, L.J.; Kärtner, F.X. Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam. Opt. Express 2010, 18, 25035–25051. [Google Scholar] [CrossRef]
- Graham, T.M.; Bernstein, H.J.; Wei, T.C.; Junge, M.; Kwiat, P.G. Superdense teleportation using hyperentangled photons. Nat. Commun. 2015, 6, 7185. [Google Scholar] [CrossRef]
- Shen, Y.; Yu, B.; Wu, H.; Li, C.; Zhu, Z.; Zayats, A.V. Topological transformation and free-space transport of photonic hopfions. Adv. Photonics 2023, 5, 015001. [Google Scholar] [CrossRef]
- Naidoo, D.; Roux, F.S.; Dudley, A.; Litvin, I.; Piccirillo, B.; Marrucci, L.; Forbes, A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics 2016, 10, 327–332. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Ma, L.; Zhang, Y.; Li, Z.; Zhang, R.; Zeng, X.; Zhan, Z.; He, C.; Ren, X.; et al. Flexible generation of higher-order Poincaré beams with high efficiency by manipulating the two eigenstates of polarized optical vortices. Opt. Express 2020, 28, 10618–10632. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, Y.; Liu, S.; Ma, C.; Han, L.; Cheng, H.; Zhao, J. Generation of perfect vectorial vortex beams. Opt. Lett. 2016, 41, 2205–2208. [Google Scholar] [CrossRef] [PubMed]
- Aieta, F.; Kats, M.A.; Genevet, P.; Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015, 347, 1342–1345. [Google Scholar] [CrossRef]
- Avayu, O.; Almeida, E.; Prior, Y.; Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 2017, 8, 14992. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, X.; Zhang, J. Active metamaterials and metadevices: A review. J. Phys. D Appl. Phys. 2020, 53, 503002. [Google Scholar] [CrossRef]
- Guo, X.; Zhong, J.; Li, B.; Qi, S.; Li, Y.; Li, P.; Wen, D.; Liu, S.; Wei, B.; Zhao, J. Full-color holographic display and encryption with full-polarization degree of freedom. Adv. Mater. 2022, 34, 2103192. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Mueller, J.B.; Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 2017, 358, 896–901. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, S.; Fan, Q.; Lu, Y.; Xu, T. Photonic spin-controlled generation and transformation of 3D optical polarization topologies enabled by all-dielectric metasurfaces. Nanoscale 2019, 11, 10646–10654. [Google Scholar] [CrossRef] [PubMed]
- Stav, T.; Faerman, A.; Maguid, E.; Oren, D.; Kleiner, V.; Hasman, E.; Segev, M. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 2018, 361, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 2011, 107, 053601. [Google Scholar] [CrossRef] [PubMed]
- Milione, G.; Evans, S.; Nolan, D.A.; Alfano, R.R. Higher order Pancharatnam-Berry phase and the angular momentum of light. Phys. Rev. Lett. 2012, 108, 190401. [Google Scholar] [CrossRef]
- Liu, M.; Huo, P.; Zhu, W.; Zhang, C.; Zhang, S.; Song, M.; Zhang, S.; Zhou, Q.; Chen, L.; Lezec, H.J.; et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun. 2021, 12, 2230. [Google Scholar] [CrossRef]
- Luo, L.; Liu, X.; Duan, S.; Li, H.; Xu, H.; Peng, S.; Liu, B.; Wang, Y.; Wang, L.; Zou, Y.; et al. Dual channel transformation of scalar and vector terahertz beams along the optical path based on dielectric metasurface. Nanophotonics 2023, 12, 3839–3848. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Yan, S.; Xu, X.; Wang, S.; Yao, B.; Wang, Z.; Zhu, S. Generation and conversion dynamics of dual Bessel beams with a photonic spin-dependent dielectric metasurface. Phys. Rev. Appl. 2021, 15, 014059. [Google Scholar] [CrossRef]
- Zang, H.; Zhou, X.; Yang, Z.; Yu, Q.; Zheng, C.; Yao, J. Polarization multiplexed multifunctional metasurface for generating longitudinally evolving vector vortex beams. Phys. Lett. A 2024, 497, 129336. [Google Scholar] [CrossRef]
- Yang, J.; Hakala, T.K.; Friberg, A.T. Generation of arbitrary vector Bessel beams on higher-order Poincaré spheres with an all-dielectric metasurface. Phys. Rev. A 2022, 106, 023520. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, R.; Li, Y.; Xiong, H.; Li, Y.; Li, X.; Li, J.; Wang, Y.; Huang, L. Generation of the Bessel Beam of Longitudinally Varied Polarization with Dielectric Metasurfaces. Adv. Opt. Mater. 2023, 11, 2202896. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, R.; Li, Y.; Tian, C.; Ji, X.; Li, X.; Li, J.; Wang, Y.; Huang, L. Transformation of longitudinally customizable curved vector vortex beams using dielectric metasurface. Laser Photonics Rev. 2024, 18, 2400226. [Google Scholar] [CrossRef]
- Li, H.; Duan, S.; Zheng, C.; Li, J.; Xu, H.; Song, C.; Yang, F.; Liu, Y.; Shi, W.; Zhang, Y.; et al. Longitudinal manipulation of scalar to vector vortex beams evolution empowered by all-silicon metasurfaces. Adv. Opt. Mater. 2023, 11, 2301368. [Google Scholar] [CrossRef]
- Xu, W.; Li, J.; Yao, J. Longitudinal evolution from scalar to vector beams assembled from all-dielectric metasurfaces. Opt. Lett. 2023, 48, 1606–1609. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Yue, Z.; Zheng, C.; Wang, G.; Liu, J.; Xu, H.; Song, C.; Yang, F.; Li, H.; et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces. Laser Photonics Rev. 2022, 16, 2200325. [Google Scholar] [CrossRef]
- Zheng, C.; Li, J.; Liu, J.; Li, J.; Yue, Z.; Li, H.; Yang, F.; Zhang, Y.; Zhang, Y.; Yao, J. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface. Laser Photonics Rev. 2022, 16, 2200236. [Google Scholar] [CrossRef]
- Zhang, F.; Pu, M.; Guo, Y.; Ma, X.; Li, X.; Gao, P.; Luo, X. Synthetic vector optical fields with spatial and temporal tenability. Sci. China Phys. Mech. Astron. 2022, 65, 254211. [Google Scholar] [CrossRef]
- He, X.; Bao, H.; Zhang, F.; Kang, T.; Pu, M.; Chen, Y.; Guo, Y.; Gong, J.; Xu, M.; Luo, X. Longitudinally continuous varying high-order cylindrical vector fields enabled by spin-decoupled metasurfaces. Nanophotonics 2021, 13, 1657–1664. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, M.; Cui, G.; Zhou, Y.; Dong, Q.; Gao, S.; Choi, D.Y.; Cheng, C.; Liu, C. Manipulations of vectorial-structured light by spatially interleaved metasurfaces of quarter-wave-plate meta-atoms. J. Light. Technol. 2024, 42, 6863–6873. [Google Scholar] [CrossRef]
- Gu, M.; Cheng, C.; Zhan, Z.; Zhang, Z.; Cui, G.; Zhou, Y.; Zeng, X.; Gao, S.; Choi, D.Y.; Cheng, C. Dielectric supercell metasurfaces for generating focused higher-order poincare beams with the residual copolarization component eliminated. ACS Photonics 2024, 11, 204–217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Ma, T.; Gu, M.; Dong, Q.; Zhou, H.; Wang, Y.; Wang, W.; Cheng, C.; Liu, C. Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces. Nanomaterials 2025, 15, 478. https://doi.org/10.3390/nano15070478
Zhao K, Ma T, Gu M, Dong Q, Zhou H, Wang Y, Wang W, Cheng C, Liu C. Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces. Nanomaterials. 2025; 15(7):478. https://doi.org/10.3390/nano15070478
Chicago/Turabian StyleZhao, Kaixin, Teng Ma, Manna Gu, Qingrui Dong, Haoyan Zhou, Yuantao Wang, Wenxin Wang, Chuanfu Cheng, and Chunxiang Liu. 2025. "Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces" Nanomaterials 15, no. 7: 478. https://doi.org/10.3390/nano15070478
APA StyleZhao, K., Ma, T., Gu, M., Dong, Q., Zhou, H., Wang, Y., Wang, W., Cheng, C., & Liu, C. (2025). Generation of Higher-Order Poincaré Beams with Polarization States Varying Along the Propagation Direction Based on Dielectric Metasurfaces. Nanomaterials, 15(7), 478. https://doi.org/10.3390/nano15070478