DNA Unwinding Driven by Gold Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. The 8 nm AuNP Synthesis
2.2.2. The 15 nm AuNP Synthesis
2.2.3. Cleavage and Purification of pUC19 Plasmid
2.2.4. Incubation of DNA with AuNPs
2.2.5. Estimation of the Number of Bases Capable of Binding to a 15 nm Gold Nanoparticle
2.2.6. Absorption Spectroscopy
2.2.7. Gel Electrophoresis
2.2.8. AFM
3. Results and Discussion
3.1. Binding of AuNPs to DNA
3.2. DNA Unwinding by Gold Nanoparticle
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold Nanoparticles for Biology and Medicine. Angew. Chem. Int. Ed. Engl. 2010, 49, 3280–3294. [Google Scholar] [CrossRef]
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The Golden Age: Gold Nanoparticles for Biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. [Google Scholar] [CrossRef]
- Dutour, R.; Bruylants, G. Gold Nanoparticles Coated with Nucleic Acids: An Overview of the Different Bioconjugation Pathways. Bioconjug. Chem. 2025, 36, 1133–1156. [Google Scholar] [CrossRef]
- Wang, C.C.; Wu, S.M.; Li, H.W.; Chang, H.T. Biomedical Applications of DNA-Conjugated Gold Nanoparticles. ChemBioChem 2016, 17, 1052–1062. [Google Scholar] [CrossRef]
- Niemeyer, C.M. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chem. 2001, 40, 4128–4158. [Google Scholar] [CrossRef]
- Lazarides, A.A.; Schatz, G.C. DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties. J. Phys. Chem. B 2000, 104, 460–467. [Google Scholar] [CrossRef]
- Thacker, V.V.; Herrmann, L.O.; Sigle, D.O.; Zhang, T.; Liedl, T.; Baumberg, J.J.; Keyser, U.F. DNA Origami Based Assembly of Gold Nanoparticle Dimers for Surface-Enhanced Raman Scattering. Nat. Commun. 2014, 5, 3448. [Google Scholar] [CrossRef] [PubMed]
- Piantanida, L.; Naumenko, D.; Lazzarino, M. Highly Efficient Gold Nanoparticle Dimer Formation via DNA Hybridization. RSC Adv. 2014, 4, 15281–15287. [Google Scholar] [CrossRef]
- Borovok, N.; Gillon, E.; Kotlyar, A. Synthesis and Assembly of Conjugates Bearing Specific Numbers of Dna Strands per Gold Nanoparticle. Bioconjug. Chem. 2012, 23, 916–922. [Google Scholar] [CrossRef]
- Busson, M.P.; Rolly, B.; Stout, B.; Bonod, N.; Larquet, E.; Polman, A.; Bidault, S. Optical and Topological Characterization of Gold Nanoparticle Dimers Linked by a Single DNA Double Strand. Nano Lett. 2011, 11, 5060–5065. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D.; Zhou, W.; Ebrahimi, S.B.; Petrosko, S.H.; Mirkin, C.A. Programmable Matter: The Nanoparticle Atom and DNA Bond. Adv. Mater. 2022, 34, 2107875. [Google Scholar] [CrossRef]
- Yao, H.; Yi, C.; Tzang, C.H.; Zhu, J.; Yang, M. DNA-Directed Self-Assembly of Gold Nanoparticles into Binary and Ternary Nanostructures. Nanotechnology 2007, 18, 15102–15107. [Google Scholar] [CrossRef]
- Maye, M.M.; Lim, I.I.S.; Luo, J.; Rab, Z.; Rabinovich, D.; Liu, T.; Zhong, C.J. Mediator-Template Assembly of Nanoparticles. J. Am. Chem. Soc. 2005, 127, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Zhuravel, R.; Stern, A.; Fardian-Melamed, N.; Eidelshtein, G.; Katrivas, L.; Rotem, D.; Kotlyar, A.B.; Porath, D. Advances in Synthesis and Measurement of Charge Transport in DNA-Based Derivatives. Adv. Mater. 2018, 30, e1706984. [Google Scholar] [CrossRef] [PubMed]
- Heintz, J.; Markešević, N.; Gayet, E.Y.; Bonod, N.; Bidault, S. Few-Molecule Strong Coupling with Dimers of Plasmonic Nanoparticles Assembled on DNA. ACS Nano 2021, 15, 14732–14743. [Google Scholar] [CrossRef] [PubMed]
- Halamish, S.; Eidelshtein, G.; Kotlyar, A. Plasmon-Coupled Nanostructures Comprising Finite Number of Gold Particles. Plasmonics 2013, 8, 745–748. [Google Scholar] [CrossRef]
- Seow, N.; Tan, Y.N.; Yung, L.Y.L.; Su, X. DNA-Directed Assembly of Nanogold Dimers: A Unique Dynamic Light Scattering Sensing Probe for Transcription Factor Detection. Sci. Rep. 2015, 5, 18293. [Google Scholar] [CrossRef]
- Hutter, E.; Maysinger, D. Gold-Nanoparticle-Based Biosensors for Detection of Enzyme Activity. Trends Pharmacol. Sci. 2013, 34, 497–507. [Google Scholar] [CrossRef]
- Templeton, A.C.; Wuelfing, W.P.; Murray, R.W. Monolayer-Protected Cluster Molecules. Acc. Chem. Res. 2000, 33, 27–36. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J. Methods for Preparing DNA-Functionalized Gold Nanoparticles, a Key Reagent of Bioanalytical Chemistry. Anal. Methods 2017, 9, 2633–2643. [Google Scholar] [CrossRef]
- Kimura-Suda, H.; Petrovykh, D.Y.; Tarlov, M.J.; Whitman, L.J. Base-Dependent Competitive Adsorption of Single-Stranded DNA on Gold. J. Am. Chem. Soc. 2003, 125, 9014–9015. [Google Scholar] [CrossRef] [PubMed]
- Irrera, S.; Portalone, G.; De Leeuw, N.H. Chemisorption of Uracil on Gold Surfaces via Density Functional Theory. Surf. Sci. 2013, 614, 20–23. [Google Scholar] [CrossRef]
- Nelson, E.M.; Rothberg, L.J. Kinetics and Mechanism of Single-Stranded DNA Adsorption onto Citrate-Stabilized Gold Nanoparticles in Colloidal Solution. Langmuir 2011, 27, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Servos, M.R.; Liu, J. Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir 2012, 28, 3896–3902. [Google Scholar] [CrossRef] [PubMed]
- Carnerero, J.M.; Jimenez-Ruiz, A.; Castillo, P.M.; Prado-Gotor, R. Covalent and Non-Covalent DNA–Gold-Nanoparticle Interactions: New Avenues of Research. ChemPhysChem 2017, 18, 17–33. [Google Scholar] [CrossRef]
- Cárdenas, M.; Barauskas, J.; Schullén, K.; Brennan, J.L.; Brust, M.; Nylander, T. Thiol-Specific and Nonspecific Interactions between DNA and Gold Nanoparticles. Langmuir 2006, 22, 3294–3299. [Google Scholar] [CrossRef]
- Sandström, P.; Boncheva, M.; Åkerman, B. Nonspecific and Thiol-Specific Binding of DNA to Gold Nanoparticles. Langmuir 2003, 19, 7537–7543. [Google Scholar] [CrossRef]
- FRENS, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Dong, J.; Carpinone, P.L.; Pyrgiotakis, G.; Demokritou, P.; Moudgil, B.M. Synthesis of Precision Gold Nanoparticles Using Turkevich Method. KONA Powder Part. J. 2020, 37, 224–232. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 13705. [Google Scholar] [CrossRef]
- Park, S.J.; Lazarides, A.A.; Mirkin, C.A.; Brazis, P.W.; Kannewurf, C.R.; Letsinger, R.L. The Electrical Properties of Gold Nanoparticle Assemblies Linked by DNA. Angew. Chem. 2000, 39, 3845–3848. [Google Scholar] [CrossRef]
- Porath, D.; Bezryadin, A.; De Vries, S.; Dekker, C. Direct Measurement of Electrical Transport through DNA Molecules. Nature 2000, 403, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Fink, H.W.; Schönenberger, C. Electrical Conduction through DNA Molecules. Nature 1999, 398, 407–410. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, P.; Li, X.; Tao, N. Direct Conductance Measurement of Single DNA Molecules in Aqueous Solution. Nano Lett. 2004, 4, 1105–1108. [Google Scholar] [CrossRef]
- Kasumov, A.Y.; Kociak, M.; Guéron, S.; Reulet, B.; Volkov, V.T.; Klinov, D.V.; Bouchiat, H. Proximity-Induced Superconductivity in DNA. Science 2001, 291, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Dekker, G.; Ratner, M.A. Electronic Properties of DNA. Phys. World 2001, 14, 29–33. [Google Scholar] [CrossRef]
- Okahata, Y.; Kobayashi, T.; Tanaka, K.; Shimomura, M. Anisotropic Electric Conductivity in an Aligned DNA Cast Film. J. Am. Chem. Soc. 1998, 120, 6165–6166. [Google Scholar] [CrossRef]
- Giese, B.; Amaudrut, J.; Köhler, A.K.; Spormann, M.; Wessely, S. Direct Observation of Hole Transfer through DNA by Hopping between Adenine Bases and by Tunnelling. Nature 2001, 412, 318–320. [Google Scholar] [CrossRef]
- Biellmann, J.F.; Jung, M.J. Preparation and Properties of 3-Cyano Pyridine Ad+, a New Analogue of Nad+. FEBS Lett. 1970, 7, 199–200. [Google Scholar] [CrossRef]



| Incubation Time | Temperature (°C) | AuNP Diameter (nm) | Interparticle DNA Length (nm) | Counted Molecules | ||
|---|---|---|---|---|---|---|
| 575 bp. Fragment | 2111 bp. Fragment | 575 bp. Fragment | 2111 bp. Fragment | |||
| 0 | 8 | 221 ± 32 | 825 ± 113 | 221 | 143 | |
| 30 min | 25 | 8 | 107 ± 25 | 713 ± 80 | 146 | 57 |
| 90 min | 25 | 8 | 90 ± 22 | 676 ± 66 | 221 | 113 |
| 7 days | 25 | 8 | 59 ± 24 | 665 ± 77 | 274 | 144 |
| 7 days | 25 | 15 | 30 (no DNA seen between NPs) | 448 ± 70 | 70 | 173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katrivas, L.; Proshkina, G.M.; Deyev, S.M.; Kotlyar, A.B. DNA Unwinding Driven by Gold Nanoparticles. Nanomaterials 2025, 15, 1872. https://doi.org/10.3390/nano15241872
Katrivas L, Proshkina GM, Deyev SM, Kotlyar AB. DNA Unwinding Driven by Gold Nanoparticles. Nanomaterials. 2025; 15(24):1872. https://doi.org/10.3390/nano15241872
Chicago/Turabian StyleKatrivas, Liat, Galina M. Proshkina, Sergey M. Deyev, and Alexander B. Kotlyar. 2025. "DNA Unwinding Driven by Gold Nanoparticles" Nanomaterials 15, no. 24: 1872. https://doi.org/10.3390/nano15241872
APA StyleKatrivas, L., Proshkina, G. M., Deyev, S. M., & Kotlyar, A. B. (2025). DNA Unwinding Driven by Gold Nanoparticles. Nanomaterials, 15(24), 1872. https://doi.org/10.3390/nano15241872

