Optimizing the Tribological Performance of Graphite–Resin Composites: The Role of High Crystallinity, Nano Morphology, and Hydrophobic Surface Modification
Abstract
1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Analysis Methods
3. Results and Discussion
3.1. Graphite Crystallinity and Morphology: Structural Determinants of Mechanical and Tribological Performance
3.2. Hydrophobic Silane Coupling: Optimizing Oil Retention and Lubrication Efficiency
3.3. High-Load Tribological Behavior: Balancing Friction Stability and Structural Integrity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smoleń, J.; Olesik, P.; Stępień, K.; Mikuśkiewicz, M.; Myalska-Głowacka, H.; Kozioł, M.; Gawron, A.; Godzierz, M. The Influence of Graphite Filler on the Self-Lubricating Properties of Epoxy Composites. Materials 2024, 17, 1308. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, A.O.; Jagadale, P.; García Herrera, J.E.; Hadjiev, V.G.; Muñoz Saldaña, J.; Tagliaferro, A.; Robles Hernandez, F.C. High-toughness/low-friction ductile epoxy coatings reinforced with carbon nanostructures. Polym. Test. 2015, 47, 113–119. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; El-Tayeb, N.; Shazly, M.; Seleman, M.M.E.-S. An experimental study on the effect of graphite microparticles on the mechanical and tribological properties of epoxy matrix composites. Funct. Compos. Mater. 2024, 5, 1–13. [Google Scholar] [CrossRef]
- Amir, R.G.; Mehrdad, J. The density effect of van der Waals forces on the elastic modules in graphite layers. Comput. Mater. Sci. 2013, 74, 138–142. [Google Scholar] [CrossRef]
- Matthew, A.; Kyriaki, K.; Shreyes, M. An investigation of graphite nanoplatelets as lubricant in grinding. Int. J. Mach. Tools Manuf. 2009, 49, 966–970. [Google Scholar] [CrossRef]
- Charlier, J.-C.; Gonze, X.; Michenaud, J.-P. Graphite Interplanar Bonding: Electronic Delocalization and van der Waals Interaction. Europhys. Lett. 1994, 28, 403–408. [Google Scholar] [CrossRef]
- Erdemir, A. Review of engineered tribological interfaces for durable lubrication. Tribol. Int. 2005, 38, 249–256. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Liu, D.; Gu, Y.; Zheng, R.; Ma, R.; Li, S.; Wang, Y.; Shi, Y. The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition. Lubricants 2022, 10, 2. [Google Scholar] [CrossRef]
- Elgazzar, A.; Zhou, S.-J.; Ouyang, J.-H.; Liu, Z.-G.; Wang, Y.-J.; Wang, Y.-M. A Critical Review of High-Temperature Tribology and Cutting Performance of Cermet and Ceramic Tool Materials. Lubricants 2023, 11, 122. [Google Scholar] [CrossRef]
- Hou, S.; Zhu, T.; Shen, W.; Kang, F.; Inagaki, M.; Huang, Z.-H. Exfoliated graphite blocks with resilience prepared by room temperature exfoliation and their application for oil–water separation. J. Hazard. Mater. 2022, 424, 127724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Gao, F.; Fu, R.; Lu, Y.; Han, X.; Su, L. Tribological behavior of phenolic resin-based friction composites filled with graphite. Materials 2021, 14, 742. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Wang, S.; Yu, M.; Duan, H.; Su, M.; Ren, M.; Sun, J. Influence of graphite/graphene on the tribological behaviors of self-lubricating fabric composite. Materials 2020, 13, 232. [Google Scholar] [CrossRef]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering: An Introduction, 9th ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Jinbang, L.; Jinyang, L.; Kai, L.; Ningning, Z.; Yang, L.; Xudong, H.; Shunli, Y.; Guorong, W. Tribological properties of oil-impregnated polyimide in double-contact friction under micro-oil lubrication conditions. Friction 2023, 11, 1493–1504. [Google Scholar]
- Pape, P.G.; Plueddemann, E.P. Methods for improving the performance of silane coupling agents. J. Adhes. Sci. Technol. 1991, 5, 831–842. [Google Scholar] [CrossRef]
- Zhou, J.; Yao, Z.; Chen, Y.; Wei, D.; Wu, Y.; Xu, T. Mechanical and Thermal Properties of Graphene Oxide/Phenolic Resin Composite. Polym. Compos. 2013, 34, 2111–2118. [Google Scholar] [CrossRef]
- Fewster, P.F. The Limits of X-ray Diffraction Theory. Crystals 2023, 13, 521. [Google Scholar] [CrossRef]
- Fang, S.; Xiao, W.; Chen, K.; Song, X. Research on the Model for the Friction Coefficient of Resin-Based Friction Material and Its Experimental Verification. Materials 2023, 16, 4791. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, Z.; Wu, X.; Xie, J. Preparation of Graphene-Based Composites Using Silane and Pyracantha fortuneana and Their Application in Metformin Adsorption from Aqueous Solution. Sci. Rep. 2025, 15, 14395. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ge, X.; Li, J. Graphene lubrication. Appl. Mater. Today 2020, 20, 100662. [Google Scholar] [CrossRef]
- Lu, F.; Lu, L.; Liu, J.; Pang, X.; Song, C. Tribological Properties and Wear Mechanism of C/C Composite Applied in Finger Seal. Machines 2023, 11, 176. [Google Scholar] [CrossRef]
- Chung, D.D.L. Review: Graphite. J. Mater. Sci. 2002, 37, 1475–1489. [Google Scholar] [CrossRef]
- Ouina, O.; Lappas, A.; Dienwiebel, M. Tribological Behaviour of a Graphite–Phenolic Resin Solid Lubricant under High Mechanical Load. Wear 2025, 570, 205936. [Google Scholar] [CrossRef]
- Schmidt, R.; Fitzek, H.; Nachtnebel, M.; Mayrhofer, C.; Schroettner, H.; Zankel, A. The combination of electron microscopy, Raman microscopy and energy dispersive X-ray spectroscopy for the investigation of polymeric materials. Polymer 2018, 384, 1800237. [Google Scholar] [CrossRef]
- Plueddemann, E.P. Nature of Adhesion through Silane Coupling Agents. In Silane Coupling Agents; Plueddemann, E.P., Ed.; Springer: Boston, MA, USA, 1991; Chapter 5. [Google Scholar]
- Lin, X.; Chen, X.; Zhao, S.; Dou, B.; Peng, Q.; Deng, Z.; Emori, W.; Gao, X.; Fang, Z. Effect of silane-modified fluorinated graphene on the anticorrosion property of epoxy coating. J. Appl. Polym. Sci. 2023, 140, e53637. [Google Scholar] [CrossRef]
- Bhushan, B.; Gupta, B.K. Handbook of Tribology: Materials, Coatings, and Surface Treatments; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Wang, Y.; Gao, Y.; Li, Y. A Study of the Microstructure and Tribological Properties of Copper-Based Cr@graphite Alloy Modified by Nano Cr3C2 and CrC. Nanomaterials 2023, 13, 2347. [Google Scholar] [CrossRef]













| Lubricant Filler | ||||
|---|---|---|---|---|
| Graphite Powder | Density (g/cm3) | Particle Size (μm) | Direction | Company | 
| Natural Graphite | 1.92 | 110.5 | anisotropic | CHINA Q | 
| Artificial Graphite | 1.80 | 30.8 | isotropic | USA I | 
| Lubricant Oil | ||||
| Impregnation Liquid | Density (g/cm3 at 15 °C) | Viscosity (mm2/s at 40 °C) | Flash Point (°C) | Company | 
| RUBIA 6800 15W-40 | 0.876 | 102.8 | 232 | S-OIL | 
| Binder | ||||
| Novolac Phenolic Resin | Molecular Weight (Mw) | Softening Temp. (°C) | Hardening Time (sec) | Company | 
| KC3002 | 1300~1700 | 113 | 85–120 | KOREA K | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-j.; Tak, Y.-j.; Yu, D.-h.; Park, S.-y.; Um, D.-h.; Cho, K.-y. Optimizing the Tribological Performance of Graphite–Resin Composites: The Role of High Crystallinity, Nano Morphology, and Hydrophobic Surface Modification. Nanomaterials 2025, 15, 1655. https://doi.org/10.3390/nano15211655
Baek S-j, Tak Y-j, Yu D-h, Park S-y, Um D-h, Cho K-y. Optimizing the Tribological Performance of Graphite–Resin Composites: The Role of High Crystallinity, Nano Morphology, and Hydrophobic Surface Modification. Nanomaterials. 2025; 15(21):1655. https://doi.org/10.3390/nano15211655
Chicago/Turabian StyleBaek, So-jung, Yeo-jin Tak, Da-hyun Yu, Seong-yeon Park, Do-hyun Um, and Kwang-youn Cho. 2025. "Optimizing the Tribological Performance of Graphite–Resin Composites: The Role of High Crystallinity, Nano Morphology, and Hydrophobic Surface Modification" Nanomaterials 15, no. 21: 1655. https://doi.org/10.3390/nano15211655
APA StyleBaek, S.-j., Tak, Y.-j., Yu, D.-h., Park, S.-y., Um, D.-h., & Cho, K.-y. (2025). Optimizing the Tribological Performance of Graphite–Resin Composites: The Role of High Crystallinity, Nano Morphology, and Hydrophobic Surface Modification. Nanomaterials, 15(21), 1655. https://doi.org/10.3390/nano15211655
 
        

 
       