Radiosensitization by Docetaxel Prodrug-Loaded Lipid Nanoparticles in Pancreatic Cancer Xenografts
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Gold Nanoparticles
2.2. Synthesis and Characterization of Lipid Nanoparticles
2.3. Xenograft Model and Treatment Protocols
2.4. Statistical Analysis
3. Results & Discussion
3.1. GNP and LNPDTX–P Characterization
3.2. Summary of Prior GNPs + LNPDTX–P + RT Data In Vitro and In Vivo
3.3. In Vivo Tumor Suppression and Survival Outcomes Following GNPs + LNPDTX–P + RT
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RT | Radiotherapy |
TME | Tumor Microenvironment |
NPs | Nanoparticles |
GNPs | Gold Nanoparticles |
PEG | Polyethylene Glycol |
RGD | Arginine-Glycine-Aspartic Acid |
LNPs | Lipid Nanoparticles |
DTX | Docetaxel |
EPR | Enhanced Permeability and Retention |
LNPDTX–P | Lipid Nanoparticles Encapsulating Docetaxel Prodrug |
TEM | Transmission Electron Microscopy |
BFSTEM | Bright-Field Scanning Transmission Electron Microscopy |
MTs | Microtubules |
PBS | Phosphate-Buffered Saline |
UPLC | Ultra-Performance Liquid Chromatography |
DSPC | 1,2-Distearoyl-sn-Glycero-3-Phosphocholine |
PEG-DSPE | Polyethylene Glycol-Distearoyl Phosphatidylethanolamine |
DMEM | Dulbecco’s Modified Eagle’s Medium |
NRG | NOD-Rag1null IL2rgnull (immunodeficient mice) |
FBS | Fetal Bovine Serum |
RES | Reticuloendothelial System |
DLS | Dynamic light scattering |
DSBs | Double-Strand Breaks |
References
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer Statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Khatoon, S.; Khan, M.J.; Abu, J.; Naeem, A. Advancements and Limitations in Traditional Anti-Cancer Therapies: A Comprehensive Review of Surgery, Chemotherapy, Radiation Therapy, and Hormonal Therapy. Discov. Oncol. 2025, 16, 607. [Google Scholar] [CrossRef]
- Wang, B.; Hu, S.; Teng, Y.; Chen, J.; Wang, H.; Xu, Y.; Wang, K.; Xu, J.; Cheng, Y.; Gao, X. Current Advance of Nanotechnology in Diagnosis and Treatment for Malignant Tumors. Signal Transduct. Target. Ther. 2024, 9, 200. [Google Scholar] [CrossRef]
- Niżnik, Ł.; Noga, M.; Kobylarz, D.; Frydrych, A.; Krośniak, A.; Kapka-Skrzypczak, L.; Jurowski, K. Gold Nanoparticles (AuNPs)—Toxicity, Safety and Green Synthesis: A Critical Review. Int. J. Mol. Sci. 2024, 25, 4057. [Google Scholar] [CrossRef]
- Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomedicine 2020, 15, 9823–9857. [Google Scholar] [CrossRef]
- Javid, H.; Oryani, M.A.; Rezagholinejad, N.; Esparham, A.; Tajaldini, M.; Karimi-Shahri, M. RGD Peptide in Cancer Targeting: Benefits, Challenges, Solutions, and Possible Integrin-RGD Interactions. Cancer Med. 2024, 13, e6800. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Fu, S.; Wu, J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomed. 2020, 15, 9407–9430. [Google Scholar] [CrossRef]
- Nanobiotix. A Multicenter Randomized, Open-Label Phase II&III Study, to Compare the Efficacy of NBTXR3, Implanted as Intratumor Injection and Activated by Radiotherapy, Versus Radiotherapy Alone in Patients with Locally Advanced Soft Tissue Sarcoma of the Extremity and Trunk Wall (Clinical Trial Registration No. NCT02379845). 2021. Available online: https://clinicaltrials.gov/study/NCT02379845 (accessed on 2 October 2025).
- Morgan, M.A.; Parsels, L.A.; Maybaum, J.; Lawrence, T.S. Improving Gemcitabine-Mediated Radiosensitization Using Molecularly Targeted Therapy: A Review. Clin. Cancer Res. 2008, 14, 6744–6750. [Google Scholar] [CrossRef] [PubMed]
- Wicker, C.A.; Petery, T.; Dubey, P.; Wise-Draper, T.M.; Takiar, V. Improving Radiotherapy Response in the Treatment of Head and Neck Cancer. Crit. Rev. Oncog. 2022, 27, 73–84. [Google Scholar] [CrossRef]
- Lesueur, P.; Chevalier, F.; Austry, J.-B.; Waissi, W.; Burckel, H.; Noël, G.; Habrand, J.-L.; Saintigny, Y.; Joly, F. Poly-(ADP-Ribose)-Polymerase Inhibitors as Radiosensitizers: A Systematic Review of Pre-Clinical and Clinical Human Studies. Oncotarget 2017, 8, 69105–69124. [Google Scholar] [CrossRef] [PubMed]
- Farha, N.G.; Kasi, A. Docetaxel; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537242/ (accessed on 2 October 2025).
- Patil, V.M.; Noronha, V.; Menon, N.; Singh, A.; Ghosh-Laskar, S.; Budrukkar, A.; Bhattacharjee, A.; Swain, M.; Mathrudev, V.; Nawale, K.; et al. Results of Phase III Randomized Trial for Use of Docetaxel as a Radiosensitizer in Patients With Head and Neck Cancer, Unsuitable for Cisplatin-Based Chemoradiation. JCO 2023, 41, 2350–2361. [Google Scholar] [CrossRef]
- Imran, M.; Saleem, S.; Chaudhuri, A.; Ali, J.; Baboota, S. Docetaxel: An Update on Its Molecular Mechanisms, Therapeutic Trajectory and Nanotechnology in the Treatment of Breast, Lung and Prostate Cancer. J. Drug Deliv. Sci. Technol. 2020, 60, 101959. [Google Scholar] [CrossRef]
- Cullis, P.R.; Felgner, P.L. The 60-Year Evolution of Lipid Nanoparticles for Nucleic Acid Delivery. Nat. Rev. Drug Discov. 2024, 23, 709–722. [Google Scholar] [CrossRef]
- Brimacombe, C.A.; Kulkarni, J.A.; Cheng, M.H.Y.; An, K.; Witzigmann, D.; Cullis, P.R. Rational Design of Lipid Nanoparticles for Enabling Gene Therapies. Mol. Ther. Methods Clin. Dev. 2025, 101518. [Google Scholar] [CrossRef] [PubMed]
- Alhussan, A.; Jackson, N.; Chow, N.; Gete, E.; Wretham, N.; Dos Santos, N.; Beckham, W.; Duzenli, C.; Chithrani, D.B. In Vitro and In Vivo Synergetic Radiotherapy with Gold Nanoparticles and Docetaxel for Pancreatic Cancer. Pharmaceutics 2024, 16, 713. [Google Scholar] [CrossRef]
- Alhussan, A.; Jackson, N.; Eaton, S.; Santos, N.D.; Barta, I.; Zaifman, J.; Chen, S.; Tam, Y.Y.C.; Krishnan, S.; Chithrani, D.B. Lipid-Nanoparticle-Mediated Delivery of Docetaxel Prodrug for Exploiting Full Potential of Gold Nanoparticles in the Treatment of Pancreatic Cancer. Cancers 2022, 14, 6137. [Google Scholar] [CrossRef]
- Alhussan, A.; Calisin, R.; Jackson, N.; Morgan, J.; Chen, S.; Tam, Y.Y.C.; Beckham, W.; Krishnan, S.; Chithrani, D.B. A Synergetic Approach Utilizing Nanotechnology, Chemotherapy, and Radiotherapy for Pancreatic Cancer Treatment. Precis. Nanomed. 2023, 6, 1157–1172. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- van der Meel, R.; Chen, S.; Zaifman, J.; Kulkarni, J.A.; Zhang, X.R.S.; Tam, Y.K.; Bally, M.B.; Schiffelers, R.M.; Ciufolini, M.A.; Cullis, P.R.; et al. Modular Lipid Nanoparticle Platform Technology for siRNA and Lipophilic Prodrug Delivery. Small 2021, 17, e2103025. [Google Scholar] [CrossRef]
- Nevozhay, D.; Rauch, R.; Wang, Z.; Sokolov, K.V. Optimal Size and PEG Coating of Gold Nanoparticles for Prolonged Blood Circulation: A Statistical Analysis of Published Data. Nanoscale Adv. 2025, 7, 722–727. [Google Scholar] [CrossRef]
- Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. Control Release 2000, 65, 271–284. [Google Scholar] [CrossRef]
- Kong, W.; Wei, Y.; Dong, Z.; Liu, W.; Zhao, J.; Huang, Y.; Yang, J.; Wu, W.; He, H.; Qi, J. Role of Size, Surface Charge, and PEGylated Lipids of Lipid Nanoparticles (LNPs) on Intramuscular Delivery of mRNA. J. Nanobiotechnol. 2024, 22, 553. [Google Scholar] [CrossRef]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef]
- Chain, C.Y.; Daza Millone, M.A.; Cisneros, J.S.; Ramirez, E.A.; Vela, M.E. Surface Plasmon Resonance as a Characterization Tool for Lipid Nanoparticles Used in Drug Delivery. Front. Chem. 2021, 8, 605307. [Google Scholar] [CrossRef]
- van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart Cancer Nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, T.; Mukhopadhyay, D.; Bhattacharya, S. Nanomechanical Insight of Pancreatic Cancer Cell Membrane during Receptor Mediated Endocytosis of Targeted Gold Nanoparticles. ACS Appl. Bio Mater. 2021, 4, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Pimenta, M.; Estevinho, L.M.; Szopa, A.; Basit, M.; Khan, K.; Armaghan, M.; Ibrayeva, M.; Sönmez Gürer, E.; Calina, D.; Hano, C.; et al. Chemotherapeutic Properties and Side-Effects Associated with the Clinical Practice of Terpene Alkaloids: Paclitaxel, Docetaxel, and Cabazitaxel. Front. Pharmacol. 2023, 14, 1157306. [Google Scholar] [CrossRef] [PubMed]
- Paun, R.A.; Jurchuk, S.; Tabrizian, M. A Landscape of Recent Advances in Lipid Nanoparticles and Their Translational Potential for the Treatment of Solid Tumors. Bioeng. Transl. Med. 2023, 9, e10601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhussan, A.; Jackson, N.; Dos Santos, N.; Chen, S.; Tam, Y.Y.C.; Chithrani, D.B. Radiosensitization by Docetaxel Prodrug-Loaded Lipid Nanoparticles in Pancreatic Cancer Xenografts. Nanomaterials 2025, 15, 1521. https://doi.org/10.3390/nano15191521
Alhussan A, Jackson N, Dos Santos N, Chen S, Tam YYC, Chithrani DB. Radiosensitization by Docetaxel Prodrug-Loaded Lipid Nanoparticles in Pancreatic Cancer Xenografts. Nanomaterials. 2025; 15(19):1521. https://doi.org/10.3390/nano15191521
Chicago/Turabian StyleAlhussan, Abdulaziz, Nolan Jackson, Nancy Dos Santos, Sam Chen, Yuen Yi C. Tam, and Devika B. Chithrani. 2025. "Radiosensitization by Docetaxel Prodrug-Loaded Lipid Nanoparticles in Pancreatic Cancer Xenografts" Nanomaterials 15, no. 19: 1521. https://doi.org/10.3390/nano15191521
APA StyleAlhussan, A., Jackson, N., Dos Santos, N., Chen, S., Tam, Y. Y. C., & Chithrani, D. B. (2025). Radiosensitization by Docetaxel Prodrug-Loaded Lipid Nanoparticles in Pancreatic Cancer Xenografts. Nanomaterials, 15(19), 1521. https://doi.org/10.3390/nano15191521