Characteristics of GaN-Based Micro-Light-Emitting Diodes for Mbps Medium-Long Distance Underwater Visible Light Communication
Abstract
1. Introduction
2. Simulations and Experiments
2.1. Model of Micro-LED Structure
2.2. Model of UWOC System Channel
2.3. Practical Experiments of the UWOC System
3. Results and Discussions
3.1. Results of Micro-LED Simulation
3.2. Results of UWOC System Channel Simulation
3.3. Results of Practical Experiments of UWOC System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.; Gao, G.; Zhang, J.; Guo, Y.; Zhang, F.; Huang, S. Sea-Trial of a Real-Time Underwater Wireless Optical Communication System in Shallow Turbid Water with Wave Fluctuation. J. Light. Technol. 2025, 43, 1140–1149. [Google Scholar] [CrossRef]
- Palaić, D.; Lopac, N.; Jurdana, I.; Brdar, D. Advancements and Challenges in Underwater Wireless Optical Communication in the Marine Environment. In Proceedings of the 2024 47th MIPRO ICT and Electronics Convention, Opatija, Croatia, 20–24 May 2024; pp. 1760–1765. [Google Scholar]
- Liang, Y.; Yin, H.; Jing, L.; Ji, X.; Wang, J. BER analysis for PAM-based UWOC-NOMA system in oceanic turbulence environment. Opt. Commun. 2023, 545, 129631. [Google Scholar] [CrossRef]
- Sun, X.; Kang, C.H.; Kong, M.; Alkhazragi, O.; Guo, Y.; Ouhssain, M.; Weng, Y.; Jones, B.H.; Ng, T.K.; Ooi, B.S. A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. J. Light. Technol. 2020, 38, 421–431. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, M.; Wang, X.; Ren, X. Design and Implementation of More Than 50m Real-Time Underwater Wireless Optical Communication System. J. Light. Technol. 2022, 40, 3654–3668. [Google Scholar] [CrossRef]
- Aldawoodi, A.; Bilge, H.Ş. Advancing Sustainable Marine Exploration: Highly Efficient Photonic Radar for Underwater Navigation Systems under the Impact of Different Salinity Levels. Sustainability 2024, 16, 2851. [Google Scholar] [CrossRef]
- Aman, W.; Al-Kuwari, S.; Muzzammil, M.; Rahman, M.M.U.; Kumar, A. Security of underwater and air–water wireless communication: State-of-the-art, challenges and outlook. Ad Hoc Networks 2023, 142, 103114. [Google Scholar] [CrossRef]
- Alraie, H.; Alahmad, R.; Ishii, K. Double the data rate in underwater acoustic communication using OFDM based on subcarrier power modulation. J. Mar. Sci. Technol. 2024, 29, 457–470. [Google Scholar] [CrossRef]
- Junejo, N.U.; Sattar, M.; Adnan, S.; Sun, H.; Adam, A.B.; Hassan, A.; Esmaiel, H. A Survey on Physical Layer Techniques and Challenges in Underwater Communication Systems. J. Mar. Sci. Eng. 2023, 11, 885. [Google Scholar] [CrossRef]
- Domingos, F.P.F.; Lotfi, A.; Ihianle, I.K.; Kaiwartya, O.; Machado, P. Underwater Communication Systems and Their Impact on Aquatic Life—A Survey. Electronics 2025, 14, 7. [Google Scholar] [CrossRef]
- Theocharidis, T.; Kavallieratou, E. Underwater communication technologies: A review. Telecommun. Syst. 2025, 88, 54. [Google Scholar] [CrossRef]
- Onasami, O.; Feng, M.; Xu, H.; Haile, M.; Qian, L. Underwater Acoustic Communication Channel Modeling Using Reservoir Computing. IEEE Access 2022, 10, 56550–56563. [Google Scholar] [CrossRef]
- Arya, S.; Tiwari, G.K. Characterizing Radio Frequency Transmission and Attenuation in Underwater Wireless Communication. In Proceedings of the 2023 3rd International Conference on Smart Generation Computing, Bangalore, India, 29–31 December 2023; pp. 1–5. [Google Scholar]
- Xu, J.; Zhang, Y. Underwater Wireless Optical Communications: From the Lab Tank to the Real Sea. J. Light. Technol. 2025, 43, 1644–1651. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, Y.; Li, Z.; Liu, M.; Yi, S.; Wang, X.; Xia, L.; Liu, G.; Shi, J.; Li, Z.; et al. Tutorial on laser-based visible light communications [Invited]. Chin. Opt. Lett. 2024, 22, 092502. [Google Scholar] [CrossRef]
- Soltani, M.D.; Sarbazi, E.; Bamiedakis, N.; de Souza, P.; Kazemi, H.; Elmirghani, J.M.H.; White, I.H.; Penty, R.V.; Haas, H.; Safari, M. Safety Analysis for Laser-Based Optical Wireless Communications: A Tutorial. Proc. IEEE 2022, 110, 1045–1072. [Google Scholar] [CrossRef]
- Ahmadi, K.; Serdijn, W.A. Advancements in Laser and LED-Based Optical Wireless Power Transfer for IoT Applications: A Comprehensive Review. IEEE Internet Things J. 2024, 12, 18887–18907. [Google Scholar] [CrossRef]
- Memon, M.H.; Yu, H.; Jia, H.; Fang, S.; Wang, D.; Zhang, H.; Xiao, S.; Kang, Y.; Ding, Y.; Gong, C.; et al. Quantum Dots Integrated Deep-Ultraviolet Micro-LED Array Toward Solar-Blind and Visible Light Dual-Band Optical Communication. IEEE Electron Device Lett. 2023, 44, 472–475. [Google Scholar] [CrossRef]
- Martínez, J.; Osorio-Roman, I.; Gualdrón-Reyes, A.F. Progress of Organic/Inorganic Luminescent Materials for Optical Wireless Communication Systems. Photonics 2023, 10, 659. [Google Scholar] [CrossRef]
- Hua, M.; Liu, S.; Zhou, L.; Bunzli, J.-C.G.; Wu, M. Phosphor-converted light-emitting diodes in the marine environment: Current status and future trends. Chem. Sci. 2024, 16, 2089–2104. [Google Scholar] [CrossRef]
- Ali, A.; Qasem, Z.A.; Li, Y.; Li, Q.; Fu, H.Y. Implementation of Simultaneous Underwater Optical Wireless Communication and Solid-State Lighting. In Proceedings of the 2023 Opto-Electronics and Communications Conference, Shanghai, China, 2–6 July 2023; pp. 1–4. [Google Scholar]
- Zhu, S.; Qiu, P.; Shan, X.; Wang, Z.; Lin, R.; Cui, X.; Zhang, G.; Tian, P. Micro-LED based double-sided emission display and cross-medium communication. IEEE Photonics J. 2022, 14, 1–5. [Google Scholar] [CrossRef]
- Tian, P.; Liu, X.; Yi, S.; Huang, Y.; Zhang, S.; Zhou, X.; Hu, L.; Zheng, L.; Liu, R. High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express 2017, 25, 1193–1201. [Google Scholar] [CrossRef]
- Babar, Z.; Izhar, M.A.M.; Nguyen, H.V.; Botsinis, P.; Alanis, D.; Chandra, D.; Ng, S.X.; Maunder, R.G.; Hanzo, L. Unary-Coded Dimming Control Improves ON-OFF Keying Visible Light Communication. IEEE Trans. Commun. 2017, 66, 255–264. [Google Scholar] [CrossRef]
- Arvanitakis, G.N.; Bian, R.; McKendry, J.J.D.; Cheng, C.; Xie, E.; He, X.; Yang, G.; Islim, M.S.; Purwita, A.A.; Gu, E.; et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays. IEEE Photonics J. 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Lin, R.; Liu, X.; Zhou, G.; Qian, Z.; Cui, X.; Tian, P. InGaN Micro-LED Array Enabled Advanced Underwater Wireless Optical Communication and Underwater Charging. Adv. Opt. Mater. 2021, 9, 2002211. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, Z.; Li, X.; Li, Y.; Wang, L.; Wang, L.; Fu, H.Y.; Yang, Y. 3.8Gb/s PAM-4 UWOC System over a 2-m Underwater Channel Enabled by a Single-pixel 175-μm GaN-based Mini-LED. IEEE Photonics J. 2022, 14, 3145188. [Google Scholar]
- Shukla, P.; Tripathi, R.; Prajapati, Y. Analysis of an M-ary quadrature amplitude modulated underwater optical wireless communication system considering geometrical loss by laser, turbulence, and receiver diversity. Opt. Eng. 2024, 63, 038102. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Jin, Z.; Zhu, S.; Wang, Z.; Qian, Z.; Fu, Y.; Tu, K.; Guan, H.; Cui, X.; et al. Red InGaN Micro-LEDs on Silicon Substrates: Potential for Multicolor Display and Wavelength Division Multiplexing Visible Light Communication. J. Light. Technol. 2023, 41, 5394–5404. [Google Scholar] [CrossRef]
- Hwang, D.; Mughal, A.; Pynn, C.D.; Nakamura, S.; DenBaars, S.P. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. J. Appl. Phys. 2017, 10, 032101. [Google Scholar] [CrossRef]
- Lu, S.; Li, J.; Huang, K.; Liu, G.; Zhou, Y.; Cai, D.; Zhang, R.; Kang, J. Designs of InGaN Micro-LED Structure for Improving Quantum Efficiency at Low Current Density. Nanoscale Res. Lett. 2021, 16, 99. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, L.; Wang, L.; Chen, C.-J.; Pepe, A.; Liu, X.; Chen, K.-C.; Wu, M.-C.; Dong, Y.; Wang, L.; et al. 2 Gbps/3 m air–underwater optical wireless communication based on a single-layer quantum dot blue micro-LED. Opt. Lett. 2020, 45, 2616–2619. [Google Scholar] [CrossRef]
- Liu, X.; Yi, S.; Zhou, X.; Fang, Z.; Qiu, Z.-J.; Hu, L.; Cong, C.; Zheng, L.; Liu, R.; Tian, P. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express 2017, 25, 27937–27947. [Google Scholar] [CrossRef]
Year | Type of LED | Size | Modulation Scheme | Channel Length | Data Rate | BER | Ref. |
---|---|---|---|---|---|---|---|
2017 | Blue GaN a micro-LED | 80 µm | NRZ-OOK b | 0.6 m | 800 Mbps | 1.3 × 10−3 | [23] |
2019 | Array of six micro-LED pixels | 80 μm | OFDM c | 4.5 m | 3.4 Gpbs | 3.1 × 10−3 | [25] |
2021 | Green InGaN micro-LED | 80 µm | NRZ-OOK | 2.3 m | 660 Mbps | 3.3 × 10−3 | [26] |
2022 | Blue mini-LED | 175 µm | PAM-4 d | 2 m | 4.4 Gbps | 2.8 × 10−3 | [27] |
2025 | Blue GaN micro-LED | 40 µm | NRZ-OOK | 11.5 m | 250 Mbps | 2.7 × 10−3 | This study |
Distance (m) | Incoming Optical Power (mW) | Maximum Data Rate (Mbps) | BER |
---|---|---|---|
2.3 | 0.267 | 420 | 3.4 × 10−3 |
6.9 | 0.136 | 290 | 1.0 × 10−3 |
11.5 | 0.0125 | 250 | 2.7 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Lin, Y.; Dai, Y.; Fan, J.; Sun, W.; Chen, J.; Yang, S.; Dou, S.; Zhu, H.; Gu, Y.; et al. Characteristics of GaN-Based Micro-Light-Emitting Diodes for Mbps Medium-Long Distance Underwater Visible Light Communication. Nanomaterials 2025, 15, 1347. https://doi.org/10.3390/nano15171347
Wang Z, Lin Y, Dai Y, Fan J, Sun W, Chen J, Yang S, Dou S, Zhu H, Gu Y, et al. Characteristics of GaN-Based Micro-Light-Emitting Diodes for Mbps Medium-Long Distance Underwater Visible Light Communication. Nanomaterials. 2025; 15(17):1347. https://doi.org/10.3390/nano15171347
Chicago/Turabian StyleWang, Zhou, Yijing Lin, Yuhang Dai, Jiakui Fan, Weihong Sun, Junyuan Chen, Siqi Yang, Shiting Dou, Haoxiang Zhu, Yan Gu, and et al. 2025. "Characteristics of GaN-Based Micro-Light-Emitting Diodes for Mbps Medium-Long Distance Underwater Visible Light Communication" Nanomaterials 15, no. 17: 1347. https://doi.org/10.3390/nano15171347
APA StyleWang, Z., Lin, Y., Dai, Y., Fan, J., Sun, W., Chen, J., Yang, S., Dou, S., Zhu, H., Gu, Y., Wang, J., Zhang, H., Chen, Q., & Liu, X. (2025). Characteristics of GaN-Based Micro-Light-Emitting Diodes for Mbps Medium-Long Distance Underwater Visible Light Communication. Nanomaterials, 15(17), 1347. https://doi.org/10.3390/nano15171347