Enhancing the Resistance to Shear Instability in Cu/Zr Nanolaminates Through Amorphous Interfacial Layer
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microstructural Characterization
2.3. Nano-Indentation and Micro-Indentation Tests
3. Results and Discussion
3.1. Microstructure of the As-Deposited Cu/Zr Nanolaminates with AIL
3.2. The Hardness of Cu/Zr Nanolaminates with AIL
3.3. The Shear Instability Behavior of Cu/Zr Nanolaminates with AIL
4. Concluding Remarks
- The hardness of the Cu/Zr nanolaminate can be significantly elevated by the AIL, reaching 7.71 GPa in the sample with 10 nm AIL, which is 11.9% higher than the homogeneous counterpart. The hardness of the nanolaminates with AIL decreases as the thickness of the AIL is reduced from 10 nm to 5 nm, which agrees well with the predictions from the rule of mixtures; when the AIL is further reduced to 2 nm, the hardness shows abnormal increases, much higher than the predicted value according to the rule of mixtures, which was attributed to significant interface strengthening.
- Based on the indentation experiments, the shear banding of the nanolaminates was significantly suppressed by the AIL, as demonstrated by fewer SBs in samples with AIL than in the homogeneous one. Two distinct shear banding modes were observed in the nanolaminates with AIL. Specifically, a cutting-like shear banding was formed in the nanolaminate with 10 nm AIL, where the layered structure was destroyed, causing severe elemental mixing between adjacent layers and subsequent amorphization. However, a kinking-like shear banding was formed in the nanolaminate with 2 nm AIL, and synergetic bending occurred in the constitutive layers within the shear banding region. The transition from cutting-like shear banding to the kinking-like one can be attributed to the amorphous phase-dominated deformation mechanism; i.e., thicker AILs promote premature shear localization, while thinner AILs facilitate homogeneous plastic flow.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ovid’ko, I.A.; Valiev, R.Z.; Zhu, Y.T. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater. Sci. 2018, 94, 462–540. [Google Scholar] [CrossRef]
- Zhang, G.P.; Liang, F.; Luo, X.M.; Zhu, X.F. A review on cyclic deformation damage and fatigue fracture behavior of metallic nanolayered composites. J. Mater. Res. 2019, 34, 1479–1488. [Google Scholar] [CrossRef]
- Nasim, M.; Li, Y.C.; Wen, M.; Wen, C.E. A review of high-strength nanolaminates and evaluation of their properties. J. Mater. Sci. Technol. 2020, 50, 215–244. [Google Scholar] [CrossRef]
- McKeown, J.; Misra, A.; Kung, H.; Hoagland, R.G.; Nastasi, M. Microstructures and strength of nanoscale Cu–Ag multilayers. Scr. Mater. 2002, 46, 593–598. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Z.W.; Wang, A.M.; Fu, H.M.; Li, H.; Zhang, H.W.; Zhang, H.F. New ductile laminate structure of Ti-alloy/Ti-based metallic glass composite with high specific strength. J. Mater. Sci. Technol. 2018, 34, 708–712. [Google Scholar] [CrossRef]
- Wei, X.Z.; Zhou, Q.; Xu, K.W.; Huang, P.; Wang, F.; Lu, T.J. Enhanced hardness via interface alloying in nanoscale Cu/Al multilayers. Mater. Sci. Eng. A 2018, 726, 274–281. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Zhang, J.Y.; Wang, Y.Q.; Wu, S.H.; Liang, X.Q.; Wu, K.; Liu, G.; Sun, J. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs. Cu/CuZr. J. Mater. Sci. Technol. 2021, 68, 16–29. [Google Scholar] [CrossRef]
- Sun, L.X.; Tao, N.R.; Kuntz, M.; Yu, J.Q.; Lu, K. Annealing-induced Hardening in a Nanostructured Low-carbon Steel Prepared by Using Dynamic Plastic Deformation. J. Mater. Sci. Technol. 2014, 30, 731–735. [Google Scholar] [CrossRef]
- Zeng, L.F.; Gao, R.; Fang, Q.F.; Wang, X.P.; Xie, Z.M.; Miao, S.; Hao, T.; Zhang, T. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater. 2016, 110, 341–351. [Google Scholar] [CrossRef]
- Ma, Y.J.; Cai, Y.P.; Wang, G.J.; Cui, M.J.; Sun, C.; Cao, Z.H.; Meng, X.K. Enhanced thermal stability by heterogeneous interface and columnar grain in nanoscale Cu/Ru multilayers. Mater. Sci. Eng. A 2019, 742, 751–759. [Google Scholar] [CrossRef]
- Zuo, J.D.; Wang, Y.Q.; Wu, K.; Yang, C.; Zhang, J.Y.; Liu, G.; Sun, J. High thermal stability of nanostructured Al mediated by heterophase interfaces and nanotwinning. Mater. Sci. Eng. A 2020, 793, 139823. [Google Scholar] [CrossRef]
- Misra, A.; Demkowicz, M.J.; Zhang, X.; Hoagland, R.G. The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 2007, 59, 62–65. [Google Scholar] [CrossRef]
- Demkowicz, M.J.; Hoagland, R.G.; Hirth, J.P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 2008, 100, 136102. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Caro, A.; Demkowicz, M.J.; Mara, N.A.; Misra, A.; Uberuaga, B.P. Radiation damage tolerant nanomaterials. Mater. Today 2013, 16, 443–449. [Google Scholar] [CrossRef]
- Han, W.; Demkowicz, M.J.; Mara, N.A.; Fu, E.; Sinha, S.; Rollett, A.D.; Wang, Y.; Carpenter, J.S.; Beyerlein, I.J.; Misra, A. Design of radiation tolerant materials via interface engineering. Adv. Mater. 2013, 25, 6975–6979. [Google Scholar] [CrossRef] [PubMed]
- Mara, N.A.; Bhattacharyya, D.; Hoagland, R.G.; Misra, A. Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 2008, 58, 874–877. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhang, X.; Wang, R.H.; Lei, S.Y.; Zhang, P.; Niu, J.J.; Liu, G.; Zhang, G.J.; Sun, J. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Mater. 2011, 59, 7368–7379. [Google Scholar] [CrossRef]
- Hu, K.; Xu, L.J.; Cao, Y.Q.; Pan, G.J.; Cao, Z.H.; Meng, X.K. Modulating individual thickness for optimized combination of strength and ductility in Cu/Ru multilayer films. Mater. Lett. 2013, 107, 303–306. [Google Scholar] [CrossRef]
- Zhang, G.P.; Liu, Y.; Wang, W.; Tan, J. Experimental evidence of plastic deformation instability in nanoscale Au∕Cu multilayers. Appl. Phys. Lett. 2006, 88, 013105. [Google Scholar] [CrossRef]
- Li, Y.P.; Zhang, G.P.; Wang, Z.G. Strength and Plastic Deformation Behavior of Nano-Scale Au/Cu and Cr/Cu Multilayers. Adv. Mater. Res. 2008, 41–42, 3–8. [Google Scholar] [CrossRef]
- Guo, W.; Jagle, E.A.; Choi, P.P.; Yao, J.; Kostka, A.; Schneider, J.M.; Raabe, D. Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates. Phys. Rev. Lett. 2014, 113, 035501. [Google Scholar] [CrossRef]
- Cui, Y.; Abad, O.T.; Wang, F.; Huang, P.; Lu, T.J.; Xu, K.W.; Wang, J. Plastic Deformation Modes of CuZr/Cu Multilayers. Sci. Rep. 2016, 6, 23306. [Google Scholar] [CrossRef]
- Li, Y.P.; Zhu, X.F.; Tan, J.; Wu, B.; Zhang, G.P. Two different types of shear-deformation behaviour in Au–Cu multilayers. Philos. Mag. Lett. 2009, 89, 66–74. [Google Scholar] [CrossRef]
- Li, Y.P.; Zhu, X.F.; Tan, J.; Wu, B.; Wang, W.; Zhang, G.P. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation. J. Mater. Res. 2011, 24, 728–735. [Google Scholar] [CrossRef]
- Wang, F.; Huang, P.; Xu, M.; Lu, T.J.; Xu, K.W. Shear banding deformation in Cu/Ta nano-multilayers. Mater. Sci. Eng. A 2011, 528, 7290–7294. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Luo, J.T.; Zeng, F.; Pan, F. Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers. Thin Solid Films 2011, 520, 818–823. [Google Scholar] [CrossRef]
- Li, J.J.; Qin, F.; Yan, D.S.; Lu, W.J.; Yao, J.H. Shear instability in heterogeneous nanolayered Cu/Zr composites. J. Mater. Sci. Technol. 2022, 105, 81–91. [Google Scholar] [CrossRef]
- Zheng, S.J.; Wang, J.; Carpenter, J.S.; Mook, W.M.; Dickerson, P.O.; Mara, N.A.; Beyerlein, I.J. Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 2014, 79, 282–291. [Google Scholar] [CrossRef]
- Mara, N.A.; Bhattacharyya, D.; Hirth, J.P.; Dickerson, P.; Misra, A. Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 2010, 97, 021909. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, G.; Lei, S.Y.; Niu, J.J.; Sun, J. Transition from Homogeneous-Like to Shear-Band Deformation in Nanolayered Crystalline Cu/amorphous Cu–Zr Micropillars: Intrinsic Vs. Extrinsic Size Effect. Acta Mater. 2012, 60, 7183–7196. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Lei, S.; Niu, J.; Liu, Y.; Liu, G.; Zhang, X.; Sun, J. Intrinsic and extrinsic size effects on deformation in nanolayered Cu/Zr micropillars: From bulk-like to small-volume materials behavior. Acta Mater. 2012, 60, 4054–4064. [Google Scholar] [CrossRef]
- Wynn, T.A.; Bhattacharyya, D.; Hammon, D.L.; Misra, A.; Mara, N.A. Large strain deformation of bimodal layer thickness Cu/Nb nanolamellar composites. Mater. Sci. Eng. A 2013, 564, 213–217. [Google Scholar] [CrossRef]
- Li, J.J.; Lu, W.J.; Zhang, S.Y.; Raabe, D. Large Strain Synergetic Material Deformation Enabled by Hybrid Nanolayer Architectures. Sci. Rep. 2017, 7, 11371. [Google Scholar] [CrossRef]
- Li, J.J.; Lu, W.J.; Gibson, J.; Zhang, S.Y.; Chen, T.Y.; Korte-Kerzel, S.; Raabe, D. Eliminating Deformation Incompatibility in Composites by Gradient Nanolayer Architectures. Sci. Rep. 2018, 8, 16216. [Google Scholar] [CrossRef]
- Li, J.J.; Lu, W.J.; Gibson, J.; Zhang, S.Y.; Korte-Kerzel, S.; Raabe, D. Compatible deformation and extra strengthening by heterogeneous nanolayer composites. Scr. Mater. 2020, 179, 30–35. [Google Scholar] [CrossRef]
- Chen, Y.; Li, N.; Hoagland, R.G.; Liu, X.Y.; Baldwin, J.K.; Beyerlein, I.J.; Cheng, J.Y.; Mara, N.A. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers. Acta Mater. 2020, 199, 593–601. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Xu, S.; Chen, Y.; Li, Z.; Baldwin, J.K.; Beyerlein, I.J.; Mara, N.A. Simultaneous High-Strength and Deformable Nanolaminates with Thick Biphase Interfaces. Nano Lett. 2022, 22, 1897–1904. [Google Scholar] [CrossRef]
- Misra, A.; Hoagland, R.G. Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 2007, 42, 1765–1771. [Google Scholar] [CrossRef]
- Wang, Y.D.; Li, J.J.; Lu, W.J.; Yuan, F.P.; Wu, X.L. Enhanced Co-Deformation of a Heterogeneous Nanolayered Cu/Ni Composite. J. Appl. Phys. 2019, 126, 215111. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Hamza, A.V.; Barbee, T.W., Jr. Ductile crystalline-amorphous nanolaminates. Proc. Natl. Acad. Sci. USA 2007, 104, 11155–11160. [Google Scholar] [CrossRef]
- Donohue, A.; Spaepen, F.; Hoagland, R.G.; Misra, A. Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett. 2007, 91, 241905. [Google Scholar] [CrossRef]
- Liu, M.C.; Huang, J.C.; Chou, H.S.; Lai, Y.H.; Lee, C.J.; Nieh, T.G. A nanoscaled underlayer confinement approach for achieving extraordinarily plastic amorphous thin film. Scr. Mater. 2009, 61, 840–843. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jang, D.C.; Greer, J.R. Nanolaminates Utilizing Size-Dependent Homogeneous Plasticity of Metallic Glasses. Adv. Funct. Mater. 2011, 21, 4550–4554. [Google Scholar] [CrossRef]
- Fan, Z.; Li, J.; Yang, Y.C.; Wang, J.; Li, Q.; Xue, S.C.; Wang, H.Y.; Lou, J.; Zhang, X.H. “Ductile” Fracture of Metallic Glass Nanolaminates. Adv. Mater. Interfaces 2017, 4, 1700510. [Google Scholar] [CrossRef]
- Brandl, C.; Germann, T.C.; Misra, A. Structure and shear deformation of metallic crystalline–amorphous interfaces. Acta Mater. 2013, 61, 3600–3611. [Google Scholar] [CrossRef]
- Guo, W.; Jagle, E.A.; Choi, P.P.; Yao, J.H.; Kostka, A.; Schneider, J.M.; Raabe, D. Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 2014, 80, 94–106. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, Y.; Chen, J.; Chen, Y.; Liu, G.; Zhang, X.; Sun, J. Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater. Sci. Eng. A 2012, 552, 392–398. [Google Scholar] [CrossRef]
- Saha, R.; Nix, W.D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 2002, 50, 23–38. [Google Scholar] [CrossRef]
- Kim, H.S.; Estrin, Y.; Bush, M.B. Plastic deformation behaviour of fine-grained materials. Acta Mater. 2000, 48, 493–504. [Google Scholar] [CrossRef]
- Kima, H.S.; Hong, S.I.; Kim, S.J. On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles. J. Mater. Process. Technol. 2001, 112, 109–113. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Ma, E. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 2011, 56, 379–473. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Li, J.; Wang, Y.Z. Heterogeneously randomized STZ model of metallic glasses: Softening and extreme value statistics during deformation. Int. J. Plast. 2013, 40, 1–22. [Google Scholar] [CrossRef]
- Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Volkert, C.A.; Donohue, A.; Spaepen, F. Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 2008, 103, 083539. [Google Scholar] [CrossRef]
- Chen, C.Q.; Pei, Y.T.; De Hosson, J.T.M. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater. 2010, 58, 189–200. [Google Scholar] [CrossRef]
Samples | Layer Thickness (nm) | ||
---|---|---|---|
Cu | Zr | Amorphous CuZr | |
AIL-10 | 9.63 ± 0.54 | 9.32 ± 0.49 | 10.12 ± 0.43 |
AIL-2 | 10.15 ± 0.91 | 8.61 ± 0.56 | 2.98 ± 0.41 |
Samples | Nano-Hardness, H (GPa) | Elastic Modulus, E (GPa) |
---|---|---|
AIL-10 | 7.71 ± 0.09 | 138 ± 2 |
AIL-5 | 7.45 ± 0.05 | 135 ± 2 |
AIL-2 | 7.64 ± 0.04 | 137 ± 3 |
Homogeneous | 6.89 ± 0.03 | 145 ± 1 |
CuZr film | 8.65 ± 0.05 | 136 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Qin, F. Enhancing the Resistance to Shear Instability in Cu/Zr Nanolaminates Through Amorphous Interfacial Layer. Nanomaterials 2025, 15, 1323. https://doi.org/10.3390/nano15171323
Chen F, Qin F. Enhancing the Resistance to Shear Instability in Cu/Zr Nanolaminates Through Amorphous Interfacial Layer. Nanomaterials. 2025; 15(17):1323. https://doi.org/10.3390/nano15171323
Chicago/Turabian StyleChen, Feihu, and Feng Qin. 2025. "Enhancing the Resistance to Shear Instability in Cu/Zr Nanolaminates Through Amorphous Interfacial Layer" Nanomaterials 15, no. 17: 1323. https://doi.org/10.3390/nano15171323
APA StyleChen, F., & Qin, F. (2025). Enhancing the Resistance to Shear Instability in Cu/Zr Nanolaminates Through Amorphous Interfacial Layer. Nanomaterials, 15(17), 1323. https://doi.org/10.3390/nano15171323