Eco-Friendly Solar-Powered H2 Generation from Plastic Waste Using Earth-Abundant Cu-Doped ZnS Catalysts
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis
2.3. Characterization
2.4. Pre-Treatment of Plastic Substrate
2.5. Photocatalytic Performance Evaluation
2.6. Photoelectrochemical Test
3. Result and Discussion
3.1. Synthesis, Composition, and Structural Analysis
3.2. Opto-Electrochemical Performance
3.3. Photocatalytic H2 Evolution Coupled with Plastics Reforming
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Q.Y.; Li, H. Photocatalytic Degradation of Plastic Waste: A Mini Review. Micromachines 2021, 12, 907. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Andrei, V.; Pornrungroj, C.; Rahaman, M.; Pichler, C.M.; Reisner, E. Reforming of Soluble Biomass and Plastic Derived Waste Using a Bias-Free Cu30Pd70 |Perovskite|Pt Photoelectrochemical Device. Adv. Funct. Mater. 2021, 32, 2109313. [Google Scholar] [CrossRef]
- Chen, A.; Yang, M.-Q.; Wang, S.; Qian, Q. Recent Advancements in Photocatalytic Valorization of Plastic Waste to Chemicals and Fuels. Front. Nanotechnol. 2021, 3, 723120. [Google Scholar] [CrossRef]
- Nagakawa, H.; Nagata, M. Photoreforming of Organic Waste into Hydrogen Using a Thermally Radiative CdOx/CdS/SiC Photocatalyst. ACS Appl. Mater. Interfaces 2021, 13, 47511–47519. [Google Scholar] [CrossRef]
- Sun, X.; Cao, D.; Hu, Q.; Yao, W.; Li, J.; Feng, Y. Progress in Chemical Recovery and Resource Utilization of Waste Plastics. China Plast. 2021, 35, 44. [Google Scholar]
- Beladi-Mousavi, S.M.; Hermanova, S.; Ying, Y.; Plutnar, J.; Pumera, M. A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Appl. Mater. Interfaces 2021, 13, 25102–25110. [Google Scholar] [CrossRef]
- Tang, X.; Han, X.; Sulaiman, N.H.M.; He, L.; Zhou, X. Recent Advances in the Photoreforming of Plastic Waste: Principles, Challenges, and Perspectives. Ind. Eng. Chem. Res. 2023, 62, 9032–9045. [Google Scholar] [CrossRef]
- Anh Nguyen, T.K.; Trần-Phú, T.; Daiyan, R.; Minh Chau Ta, X.; Amal, R.; Tricoli, A. From Plastic Waste to Green Hydrogen and Valuable Chemicals Using Sunlight and Water. Ind. Eng. Chem. Res. 2023, 62, 9032–9045. [Google Scholar] [CrossRef]
- Sun, D.-W.; Chen, K.-L.; Huang, J.-H. Benzenesulfonyl chloride-incorporated g-C3N4 for photocatalytic hydrogen generation by using the hydrolysate of poly(lactic acid) as sacrificial reagent. Appl. Catal. A Gen. 2021, 628, 118397. [Google Scholar] [CrossRef]
- Uekert, T.; Bajada, M.A.; Schubert, T.; Pichler, C.M.; Reisner, E. Scalable Photocatalyst Panels for Photoreforming of Plastic, Biomass and Mixed Waste in Flow. ChemSusChem 2021, 14, 4190–4197. [Google Scholar] [CrossRef]
- Kawai, T.; Sakata, T. Photocatalytic Hydrogen Production from Water by the Decomposition of Poly-vinyl chloride, Protein, Algae, Dead Inxects and Excrement. Chem. Lett. 1981, 10, 81–84. [Google Scholar] [CrossRef]
- Uekert, T.; Kuehnel, M.F.; Wakerley, D.W.; Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Env. Sci. 2018, 11, 2853–2857. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Xu, X.X.; Lu, W.; Huo, Y.Q.; Bian, L.J. A sulfur vacancy rich CdS based composite photocatalyst with g-C3N4 as a matrix derived from a Cd-S cluster assembled supramolecular network for H2 production and VOC removal. Dalton Trans. 2018, 47, 4219–4227. [Google Scholar] [CrossRef]
- Hao, Z.; Hu, M.; Kang, Z.; Wang, J.; Liu, C.; Feng, Q.; Xu, L. Cu modified ZnS photocatalysts for enhancing the photocatalytic H2 production activity. Int. J. Hydrogen Energy 2025, 106, 403–410. [Google Scholar] [CrossRef]
- Bao, L.P.; Ren, X.H.; Liu, C.Y.; Liu, X.; Dai, C.H.; Yang, Y.; Bououdina, M.; Ali, S.; Zeng, C. Modulating the doping state of transition metal ions in ZnS for enhanced photocatalytic activity. Chem. Commun. 2023, 59, 11280–11283. [Google Scholar] [CrossRef]
- Huang, J.M.; Chen, J.M.; Liu, W.X.; Zhang, J.W.; Chen, J.Y.; Li, Y.W. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production. Chin. J. Catal. 2022, 43, 782–792. [Google Scholar] [CrossRef]
- Wang, Q.; An, N.; Bai, Y.; Hang, H.; Li, J.; Lu, X.; Liu, Y.; Wang, F.; Li, Z.; Lei, Z. High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. Int. J. Hydrogen Energy 2013, 38, 10739–10745. [Google Scholar] [CrossRef]
- Chen, F.; Zai, J.; Xu, M.; Qian, X. 3D-hierarchical Cu3SnS4 flowerlike microspheres: Controlled synthesis, formation mechanism and photocatalytic activity for H2 evolution from water. J. Mater. Chem. A 2013, 1, 4316–4323. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Y.-M.; Song, W.-D. Narrowband near-ultraviolet photodetector fabricated from porous GaN/CuZnS heterojunction. Acta Phys. Sin. 2022, 71, 218501. [Google Scholar] [CrossRef]
- Woods-Robinson, R.; Han, Y.; Mangum, J.S.; Melamed, C.L.; Gorman, B.P.; Mehta, A.; Persson, K.A.; Zakutayev, A. Combinatorial Tuning of Structural and Optoelectronic Properties in CuxZn1−xS. Matter 2019, 1, 862–880. [Google Scholar] [CrossRef]
- Aghaei, F.; Sahraei, R.; Soheyli, E.; Daneshfar, A. Dopant-Concentration Dependent Optical and Structural Properties of Cu Doped ZnS Thin Films. J. Nanostruct. 2022, 12, 330–342. [Google Scholar] [CrossRef]
- Sundaram, S.K.; Subramanian, S.; Panneerselvam, V.; Salammal, S.T. Temperature-dependent phase transition of CuZnS thin films and its effects on morphological, optical and electrical properties. Thin Solid Film. 2021, 733, 138810. [Google Scholar] [CrossRef]
- Jose, E.; Kumar, M.C.S. Room temperature deposition of highly crystalline Cu-Zn-S thin films for solar cell applications using SILAR method. J. Alloys Compd. 2017, 712, 649–656. [Google Scholar] [CrossRef]
- Wang, P.F.; Shen, Z.R.; Xia, Y.G.; Wang, H.T.; Zheng, L.R.; Xi, W.; Zhan, S.H. Atomic Insights for Optimum and Excess Doping in Photocatalysis: A Case Study of Few-Layer Cu-ZnIn2S4. Adv. Funct. Mater. 2019, 29, 1807013. [Google Scholar] [CrossRef]
- Lv, Z.; Yan, S.; Mu, W.; Liu, Y.; Xin, Q.; Liu, Y.; Jia, Z.; Tao, X. A High Responsivity and Photosensitivity Self-Powered UV Photodetector Constructed by the CuZnS/Ga2O3 Heterojunction. Adv. Mater. Interfaces 2022, 10, 2202130. [Google Scholar] [CrossRef]
- Gubari, G.M.; Ibrahim Mohammed, S.M.; Huse, N.P.; Dive, A.S.; Sharma, R. An Experimental and Theoretical Study of Cu0.2Zn0.8S Thin Film Grown by Facile Chemical Bath Deposition as an Efficient Photosensor. J. Electron. Mater. 2018, 47, 6128–6135. [Google Scholar] [CrossRef]
- Li, J.; Kuang, C.; Zhao, M.; Zhao, C.; Liu, L.; Lu, F.; Wang, N.; Huang, C.; Duan, C.; Jian, H.; et al. Ternary CuZnS Nanocrystals: Synthesis, Characterization, and Interfacial Application in Perovskite Solar Cells. Inorg. Chem. 2018, 57, 8375–8381. [Google Scholar] [CrossRef]
- Poornaprakash, B.; Chalapathi, U.; Poojitha, P.T.; Vattikuti, S.V.P.; Reddy, M.S.P. (Al, Cu) Co-doped ZnS nanoparticles: Structural, chemical, optical, and photocatalytic properties. J. Mater. Sci. Mater. Electron. 2019, 30, 9897–9902. [Google Scholar] [CrossRef]
- Li, G.; Dimitrijevic, N.M.; Chen, L.; Rajh, T.; Gray, K.A. Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites. J. Phys. Chem. C 2008, 112, 19040–19044. [Google Scholar] [CrossRef]
- Sun, J.; Guan, Y.; Yang, G.; Qiu, S.; Shao, H.; Wang, Y.; Li, G.; Xiao, S. S-Scheme Photocatalyst NH2–UiO-66/CuZnS with Enhanced Photothermal-Assisted CO2 Reduction Performances. ACS Sustain. Chem. Eng. 2023, 11, 14827–14840. [Google Scholar] [CrossRef]
- Lee, G.-J.; Anandan, S.; Masten, S.J.; Wu, J.J. Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation, Renew. Energy 2016, 89, 18–26. [Google Scholar] [CrossRef]
- Huang, F.X.; Wang, F.; Liu, Y.; Guo, L.J. Cu-ZnS Modulated Multi-Carbon Coupling Enables High Selectivity Photoreduction CO2 to CH3CH2COOH. Adv. Mater. 2025, 37, 2416708. [Google Scholar] [CrossRef]
- Ali, N.; Tsega, T.T.; Cao, Y.; Abbas, S.; Li, W.; Iqbal, A.; Fazal, H.; Xin, Z.; Zai, J.; Qian, X. Copper vacancy activated plasmonic Cu3−xSnS4 for highly efficient photocatalytic hydrogen generation: Broad solar absorption, efficient charge separation and decreased HER overpotential. Nano Res. 2021, 14, 3358–3364. [Google Scholar] [CrossRef]
- Su, X.; Jiang, Z.; Zhou, J.; Liu, H.; Zhou, D.; Shang, H.; Ni, X.; Peng, Z.; Yang, F.; Chen, W.; et al. Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322. [Google Scholar] [CrossRef]
- Nguyen, T.K.A.; Tran-Phú, T.; Ta, X.M.C.; Truong, T.N.; Leverett, J.; Daiyan, R.; Amal, R.; Tricoli, A. Understanding Structure-Activity Relationship in Pt-loaded g-C3N4 for Efficient Solar-Photoreforming of Polyethylene Terephthalate Plastic and Hydrogen Production. Small Methods 2024, 8, 2300427. [Google Scholar] [CrossRef]
- Guo, S.; Huang, Y.; Li, D.; Xie, Z.; Jia, Y.; Wu, X.; Xu, D.; Shi, W. Visible-light-driven photoreforming of poly(ethylene terephthalate) plastics via carbon nitride porous microtubes. Chem. Commun. 2023, 59, 7791–7794. [Google Scholar] [CrossRef]
- Balayeva, N.O.; Mamiyev, Z.Q. Synthesis and studies of CdS and ZnS-PE/NBR modified thermoplastic elastomeric copolymer nanocomposite films. Mater. Lett. 2016, 162, 121–125. [Google Scholar] [CrossRef]
- Jiang, G.; Zhu, B.; Sun, J.; Liu, F.; Wang, Y.; Zhao, C. Enhanced activity of ZnS (111) by N/Cu co-doping: Accelerated degradation of organic pollutants under visible light. J. Environ. Sci. 2023, 125, 244–257. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Xiao, N.; Wang, A.; Li, X.; Gao, Y.; Li, N.; Song, W.; Ge, L.; Liu, J. In-situ synthesis of ternary metal phosphides NixCo1−xP decorated Zn0.5Cd0.5S nanorods with significantly enhanced photocatalytic hydrogen production activity. Chem. Eng. J. 2019, 378, 122220. [Google Scholar] [CrossRef]
- Xiao, L.; Su, T.; Wang, Z.; Zhang, K.; Peng, X.; Han, Y.; Li, Q.; Wang, X. Enhanced Photocatalytic Hydrogen Evolution by Loading Cd0.5Zn0.5S QDs onto Ni2P Porous Nanosheets. Nanoscale Res. Lett. 2018, 13, 31. [Google Scholar] [CrossRef]
- Mamiyev, Z.Q.; Balayeva, N.O. Optical and structural studies of ZnS nanoparticles synthesized via chemical in situ technique. Chem. Phys. Lett. 2016, 646, 69–74. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.W.; Yao, S.; Liu, F.Y.; Li, Y.K.; He, J.Q.; Lin, Z.; Huang, F.; Liu, C.; Wang, M.Y. Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. J. Mater. Chem. A 2021, 9, 17143–17172. [Google Scholar] [CrossRef]
- Liu, C.X.; Liu, K.; Xu, Y.; Wang, Z.; Weng, Y.; Liu, F.; Chen, Y. Photocatalytic Upgrading of Polylactic Acid Waste into Alanine under Mild Conditions. Angew Chem. Int. Ed. 2024, 63, e202401225. [Google Scholar] [CrossRef]
- Hao, X.; Deng, W.; Fan, Y.; Jin, Z. Engineering of a hierarchical S-scheme 2D/3D heterojunction with graphdiyne (g-CnH2n−2) coated 3D porous CoAl2O4 nanoflowers for highly efficient photocatalytic H2 evolution. J. Mater. Chem. A 2024, 12, 8543–8560. [Google Scholar] [CrossRef]
- Singh, A.; Gogoi, R.; Sharma, K.; Fourati, N.; Zerrouki, C.; Remita, S.; Siril, P.F. Continuous flow synthesis of Ag-PEDOT-COF nanocomposite for sustainable photoreforming of plastic waste and chromium remediation in visible light. Sep. Purif. Technol. 2023, 323, 124459. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Yu, W.; Zhao, H.; Hu, Z.-Y.; Liu, F.; Hasan, T.; Li, Y.; Van Tendeloo, G.; Li, C.; et al. Bioinspired Noncyclic Transfer Pathway Electron Donors for Unprecedented Hydrogen Production. CCS Chem. 2023, 5, 1470–1482. [Google Scholar] [CrossRef]
- Gong, X.; Tong, F.; Ma, F.; Zhang, Y.; Zhou, P.; Wang, Z.; Liu, Y.; Wang, P.; Cheng, H.; Dai, Y.; et al. Photoreforming of plastic waste poly (ethylene terephthalate) via in-situ derived CN-CNTs-NiMo hybrids. Appl. Catal. B Environ. 2022, 307, 121143. [Google Scholar] [CrossRef]
- Du, M.; Zhang, Y.; Kang, S.; Guo, X.; Ma, Y.; Xing, M.; Zhu, Y.; Chai, Y.; Qiu, B. Trash to Treasure: Photoreforming of Plastic Waste into Commodity Chemicals and Hydrogen over MoS2-Tipped CdS Nanorods. ACS Catal. 2022, 12, 12823–12832. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.B.; Wang, L.; Liu, J.D.; Liang, G.J.; Davey, K.; Ran, J.R.; Qiao, S.Z. Boosted Photoreforming of Plastic Waste via Defect-Rich NiPS3 Nanosheets. J. Am. Chem. Soc. 2023, 145, 6410–6419. [Google Scholar] [CrossRef]
- Han, M.; Zhu, S.; Xia, C.; Yang, B. Photocatalytic upcycling of poly(ethylene terephthalate) plastic to high-value chemicals. Appl. Catal. B Environ. 2022, 316, 121662. [Google Scholar] [CrossRef]
- Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Optimizing Atomic Hydrogen Desorption of Sulfur-Rich NiS1+x Cocatalyst for Boosting Photocatalytic H2 Evolution. Adv. Mater. 2022, 34, e2108475. [Google Scholar] [CrossRef]
- Cao, B.; Wan, S.; Wang, Y.; Guo, H.; Ou, M.; Zhong, Q. Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1-xS photocatalyst. J. Colloid Interface Sci. 2022, 605, 311–319. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Wang, H.-H.; Zhao, T.-J.; Zhang, B.; Su, H.; Xue, Z.-H.; Li, X.-H.; Chen, J.-S. Schottky Barrier Induced Coupled Interface of Electron-Rich N-Doped Carbon and Electron-Deficient Cu: In-Built Lewis Acid–Base Pairs for Highly Efficient CO2 Fixation. J. Am. Chem. Soc. 2018, 141, 38–41. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Edalati, K. Efficient photoreforming of plastic waste using a high-entropy oxide catalyst. J. Catal. 2024, 440, 115808. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Guo, C.; Lam, E.; Holstein, J.M.; Pereira, M.R.; Pichler, C.M.; Pornrungroj, C.; Rahaman, M.; Uekert, T.; Hollfelder, F.; et al. Chemoenzymatic Photoreforming: A Sustainable Approach for Solar Fuel Generation from Plastic Feedstocks. J. Am. Chem. Soc. 2023, 145, 20355–20364. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, S. Tandem Chemical Depolymerization and Photoreforming of Waste PET Plastic to High-Value-Added Chemicals. ACS Catal. 2024, 14, 2949–2958. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, Y.; Choy, K.L. Eco-Friendly Solar-Powered H2 Generation from Plastic Waste Using Earth-Abundant Cu-Doped ZnS Catalysts. Nanomaterials 2025, 15, 1311. https://doi.org/10.3390/nano15171311
Li Z, Wang Y, Choy KL. Eco-Friendly Solar-Powered H2 Generation from Plastic Waste Using Earth-Abundant Cu-Doped ZnS Catalysts. Nanomaterials. 2025; 15(17):1311. https://doi.org/10.3390/nano15171311
Chicago/Turabian StyleLi, Zhen, Ye Wang, and Kwang Leong Choy. 2025. "Eco-Friendly Solar-Powered H2 Generation from Plastic Waste Using Earth-Abundant Cu-Doped ZnS Catalysts" Nanomaterials 15, no. 17: 1311. https://doi.org/10.3390/nano15171311
APA StyleLi, Z., Wang, Y., & Choy, K. L. (2025). Eco-Friendly Solar-Powered H2 Generation from Plastic Waste Using Earth-Abundant Cu-Doped ZnS Catalysts. Nanomaterials, 15(17), 1311. https://doi.org/10.3390/nano15171311