Analogs of the Prime Number Problem in a Shot Noise Suppression of the Soft-Reset Process
Abstract
1. Introduction
2. Summary of Derivation of the Probability Distribution Function, Cumulants, and Basic Assumptions
2.1. Methods of Modeling and Derivation of the Probability Distribution Function and the Cumulants
2.2. Essential Assumptions and an Equivalent Circuit Model
3. Results
3.1. Lifetime of a State as a Prime Element
3.2. Analyses of a Linear Operator Zeta Function
3.3. The Euler-Product-Type Zeta Function
4. Discussion
4.1. Correspondence Between the Prime Number Problem and the Soft-Reset Statistics
4.2. Generality and Limitations of the Present Assumptions in Mesoscopic Devices
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SR | Soft-Reset |
Probability Distribution Function | |
HDF | Hypoexponential Distribution Function |
KB | Kolmogorov–Bateman |
PNT | Prime Number Theorem |
FD | Floating Diffusion |
MGF | Moment Generating Function |
SET | Single Electron Transistor |
Appendix A. Derivation of from Its Definition
References
- Van der Ziel, A. Noise, Sources, Characterization, Measurement; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1970; p. 89. [Google Scholar]
- Gardiner, C.W. Handbook of Stochastic Methods, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 11–15. [Google Scholar]
- Papoulis, A. Probability Random Variables and Stochastic Processes; McGraw-Hill: New York, NY, USA, 1991; pp. 629–632. [Google Scholar]
- Thornber, K.K. Theory of Noise in Charge-Transfer Devices. Bell Syst. Tech. J. 1974, 53, 1211–1262. [Google Scholar] [CrossRef]
- Pain, B.; Yang, G.; Ortiz, M.; Wrigley, C.; Hancock, B.; Cunningham, T. Analysis and Enhancement of Lowlight-Level Performance of Photodiode-Type CMOS Active Pixel Imagers with Sub-Threshold Reset. In Proceedings of the IEEE Workshop Charge-Coupled Devices and Advanced Image Sensors, Nagano, Japan, 10–12 June 1999; pp. 140–143. [Google Scholar]
- Tian, H.; Fowler, B.; Gamal, A.E. Analysis of temporal noise in CMOS photodiode active pixel sensor. IEEE J. Solid-State Circuits 2001, 36, 92–101. [Google Scholar] [CrossRef]
- Fossum, E.R. Charge Transfer Noise and Lag in CMOS Active Pixel Sensors. In Proceedings of the IEEE Workshop Charge-Coupled Devices and Advanced Image Sensors, Bavaria, Germany, 15–17 May 2003; pp. 11–13. [Google Scholar]
- Teranishi, N. Analysis of subthreshold current reset noise in image sensors. Sensors 2016, 18, 663. [Google Scholar] [CrossRef]
- Shioyama, Y.; Matsunaga, Y.; Hatori, F.; Tango, H.; Yoshida, O. Analysis of random noise in STACK-CCD sensor. ITE J. 1994, 48, 194–199. (In Japanese) [Google Scholar]
- Ishii, M.; Kasuga, S.; Yazawa, K.; Sakata, Y.; Okino, T.; Sato, Y. An Ultra-low Noise Photoconductive Film Image Sensor with a High-speed Column Feedback Amplifier Noise Canceller. In Proceedings of the 2013 Symposium on VLSI Circuits, Kyoto, Japan, 12–14 June 2013; pp. 647–648. [Google Scholar]
- Altland, A.; Simons, B. Condensed Matter Field Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 745–752. [Google Scholar]
- Levitov, L.S. The Statistical Theory of Mesoscopic Noise. In Quantum Noise in Mesoscopic Physics; Nazarov, Y.V., Ed.; NATO Science Series; Springer: Dordrecht, The Netherlands, 2003; Volume 97, pp. 373–396. [Google Scholar] [CrossRef]
- Belzig, W. Full counting statistics in quantum contacts. In CFN Lectures on Functional Nanostructures, Vol. 1; Lecture Notes in Physics; Busch, K., Powell, A., Röthig, C., Schön, G., Weissmüller, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 658, pp. 123–143. [Google Scholar] [CrossRef]
- Honeychurch, T.D.; Kosov, D.S. Full counting statistics for electron transport in periodically driven quantum dots. Phys. Rev. B 2020, 102, 195409. [Google Scholar] [CrossRef]
- Gabelli, J.; Reulet, B. Full counting statistics of avalanche transport: An experiment. Phys. Rev. B 2009, 80, 161203. [Google Scholar] [CrossRef]
- Hirose, Y. Suppression of shot noise during the soft reset by cascaded transitions on a potential ladder with single-carrier charging steps. IEEE Trans. Electron Devices 2021, 68, 1723–1729. [Google Scholar] [CrossRef]
- Hirose, Y. Full Counting Statistics of the Soft-Reset Process. IEEE Trans. Electron Devices 2023, 70, 5769–5777. [Google Scholar] [CrossRef]
- Babiker, S. Shot Noise in Single-Electron Tunneling Systems: A Semiclassical Model. IEEE Trans. Nanotech. 2011, 10, 1191–1195. [Google Scholar] [CrossRef]
- Hardy, G.H.; Wright, E.M. THE SERIES OF PRIMES. In An Introduction to the Theory of Numbers, 6th ed.; Oxford University Press: Oxford, UK, 2008; pp. 1–13. [Google Scholar]
- Conrey, J.B. The Riemann Hypothesis. Not. AMS 2003, 50, 341–353. [Google Scholar]
- Kurokawa, N. Riemann and Number Theory; Kyoritsu Shuppan: Tokyo, Japan, 2014; pp. 22–29. (In Japanese) [Google Scholar]
- Silverman, J.H. Abstract Algebra An Integrated Approach; American Mathematical Society: Providence, RI, USA, 2022; pp. 110–116. [Google Scholar]
- Hawking, S.W. Zeta Function Regularization of Path Integrals in Curved Spacetime. Commun. Math. Phys. 1977, 55, 133–148. [Google Scholar] [CrossRef]
- Zagier, D.B. Zetafunktionen und quadratiche Körper; Springer: Berlin/Heidelberg, Germany, 1981; pp. 1–2. (In German) [Google Scholar]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physics, 4th ed.; Academic Press: San Diego, CA, USA, 1995; p. 595. [Google Scholar]
- Ross, S.M. Introduction to Probability Models, 11th ed.; Academic Press: Oxford, UK, 2014; p. 296. [Google Scholar]
- Hardy, G.H.; Wright, E.M. Higher powers. In An Introduction to the Theory of Numbers, 6th ed.; Oxford University Press: Oxford, UK, 2008; p. 320. [Google Scholar]
- Teranishi, N.; Kohono, A.; Ishihara, Y.; Oda, E.; Arai, K. No image lag photodiode structure in the interline CCD image sensor. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 13–15 December 1982; pp. 324–327. [Google Scholar] [CrossRef]
- Jain, J.K. The Composite Fermion: A Quantum Particle and Its Quantum Fluids. Phys. Today 2000, 53, 39–45. [Google Scholar] [CrossRef]
Item | Prime Number Problem | Soft-Reset |
---|---|---|
Basic Ring | Integers: | Polynomials (Moments): |
Prime Elements | Prime Numbers: | Lifetimes (Eigen Values) |
Euler Product | ||
Zeta Functions | , ~ | |
Poles/Zeros | Poles and zeros | Poles on the imaginary axis |
Basel problem | Soft-reset noise problem | |
Prime Number Theorem |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirose, Y. Analogs of the Prime Number Problem in a Shot Noise Suppression of the Soft-Reset Process. Nanomaterials 2025, 15, 1297. https://doi.org/10.3390/nano15171297
Hirose Y. Analogs of the Prime Number Problem in a Shot Noise Suppression of the Soft-Reset Process. Nanomaterials. 2025; 15(17):1297. https://doi.org/10.3390/nano15171297
Chicago/Turabian StyleHirose, Yutaka. 2025. "Analogs of the Prime Number Problem in a Shot Noise Suppression of the Soft-Reset Process" Nanomaterials 15, no. 17: 1297. https://doi.org/10.3390/nano15171297
APA StyleHirose, Y. (2025). Analogs of the Prime Number Problem in a Shot Noise Suppression of the Soft-Reset Process. Nanomaterials, 15(17), 1297. https://doi.org/10.3390/nano15171297