Femtosecond Laser Fabrication of Wettability-Functional Surfaces: A Review of Materials, Structures, Processing, and Applications
Abstract
:1. Introduction
2. Theoretical Basis of Surface Wettability
- (1)
- Young’s Model [24]: The relationship between the contact angle (θ) and the surface tension of the liquid–gas interface, solid–gas interface, and solid–liquid interface, known as Young’s equation, can be numerically expressed as:
- (2)
- Wenzel Model [25]: For non-ideal surfaces with uneven chemical composition and morphology, Young’s equation cannot be utilized to describe wetting behavior. Thus, Wenzel et al. further modified Young’s equation and proposed that droplets penetrated the rough structure on the surface. In the Wenzel state, the contact angle θ* is given by the Wenzel wetting equation, which largely depends on the contact angle θ from Young’s equation.
- (3)
- Cassie–Baxter Model [26]: Cassie and Baxter introduced another model to explain the wetting phenomena, such as the lotus effect and self-cleaning behavior. This model assumes that in hydrophobic conditions, the droplet does not penetrate the surface roughness but instead forms a three-phase composite contact between the solid–liquid and gas–liquid interfaces. As a result, a new contact angle relationship is introduced as:
- (4)
- Other models considering mediums [27]: In addition to three typical wettability models mentioned above, various wettability states have also attracted significant attention. Due to the different interactions between mediums and surfaces, factors such as liquid surface tension and intermolecular forces can affect the affinity of the surfaces. Therefore, consideration of the composition of the mediums is necessary. For example, ordinary hydrophilic, hydrophobic, oleophilic, and oleophobic states will be introduced in the air. The gas-related wettability states, such as superaerophilicity and superaerophobicity, also emerge in the water. Generally, these states are obtained by combining the intrinsic wettability of flat substrates (hydrophilicity, hydrophobicity, oleophilicity, and oleophobicity) with super-wettability after introducing micro- and nanoscale roughness in different mediums (air, water, and oil), inducing a total of 64 unique wettability states and providing a rich foundation for the application of super-wettability surfaces. The transition between different wettability states can be achieved through a combination of micro/nano structure design, surface chemical modification, composite structures with liquid injection, and the integration of stimulus-responsive materials and structures. These wettability states can offer abundant possibilities for the design of surface wettability.
3. Materials with Determinative and Switching Wettability
3.1. Materials with Determinative Wettability
3.1.1. Materials with Intrinsic Hydrophilicity
3.1.2. Materials with Intrinsic Hydrophobicity
3.2. Smart Materials with Switching Wettability
4. Functional Structures for Wettability Control
4.1. Uniform Micro/Nano Structures
4.1.1. Single-Scale Structures
4.1.2. Cross-Scale Structures
4.1.3. Triple-Scale Structures
4.2. Non-Uniform Micro/Nano Structures
5. Femtosecond Laser Modulation for Multi-Scale Structure Fabrication
5.1. Spatial Light Modulation
5.2. Modeling for the Modulated Femtosecond Laser Processing
6. Application of Wettability Control in Industry Fields
6.1. Environmental Engineering
6.2. Aerospace
6.3. Biomedical
7. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Guo, Y.; Zhao, H. Femtosecond laser processed superhydrophobic surface. J. Manuf. Process. 2024, 109, 250–287. [Google Scholar]
- Nguyen-Tri, P.; Tran, H.N.; Plamondon, C.O.; Tuduri, L.; Vo, D.V.N.; Nanda, S.; Mishra, A.; Chao, H.P.; Bajpai, A.K. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog. Org. Coat. 2019, 132, 235–256. [Google Scholar]
- Li, T.; Peng, Y.; You, H.; Guan, X.Y.; Lv, J.; Yang, C. Recent Developments in the fabrication and application of superhydrophobic suraces. Chem. Rec. 2024, 24, e202400065. [Google Scholar]
- Eriksson, M.; Swerin, A. Forces at superhydrophobic and superamphiphobic surfaces. Curr. Opin. Colloid Interface Sci. 2020, 47, 46–57. [Google Scholar]
- Ahmed, G.; Tash, O.A.; Cook, J.; Trybala, A.; Starov, V. Biological applications of kinetics of wetting and spreading. Adv. Colloid Interface Sci. 2017, 249, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.M.; Au, S.; Dijvejin, Z.A.; Zarasvand, K.A.; Dolatabadi, A.; Golovin, K. Superhydrophobic surfaces exhibiting low interfacial toughness with ice. Chem. Eng. J. 2025, 508, 160929. [Google Scholar]
- Xu, Z.Z.; Wang, G.Y.; Li, S.X.; Li, D.Q.; Zhou, W.T.; Yang, C.C.; Sun, H.; Liu, Y. Thermodynamic mechanisms governing icing: Key insights for designing passive anti-icing surfaces. iScience 2025, 28, 111668. [Google Scholar] [CrossRef]
- Wang, G.L.; Wang, J.; Cheng, K.J.; Yang, K.; Zhang, W.W. Nano hierarchical hill-like structure with TA1 surface manufactured by LIPSS for anti-corrosion and anti-icing. J. Mater. Res. Technol. 2025, 35, 3655–3667. [Google Scholar]
- Lian, Z.X.; Zhou, J.H.; Ren, W.F.; Chen, F.Z.; Xu, J.K.; Tian, Y.L.; Yu, H.D. Recent progress in bio-inspired macrostructure array materials with special wettability-from surface engineering to functional applications. Int. J. Extrem. Manuf. 2023, 6, 012008. [Google Scholar]
- Yuan, L.F.; Wu, T.Z.; Zhang, W.J.; Ling, S.Q.; Xiang, R.; Gui, X.C.; Zhu, Y.; Tang, Z.K. Engineering superlyophobic surfaces on curable materials based on facile and inexpensive microfabrication. J. Mater. Chem. A 2014, 2, 6952–6959. [Google Scholar]
- Yu, Z.Q.; Zhou, C.; Liu, R.; Zhang, Q.X.; Gong, J.W.; Tao, D.H.; Ji, Z.Y. Fabrication of superhydrophobic surface with enhanced corrosion resistance on H62 brass substrate. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124475. [Google Scholar] [CrossRef]
- Wang, L.X.; Yin, K.; Deng, Q.W.; Huang, Q.Q.; Arnusch, C.J. Multiscale hybrid-structured femtosecond laser-induced graphene with outstanding photo-electro-thermal effects for all-day anti-icing/deicing. Carbon 2024, 219, 118824. [Google Scholar]
- Yong, J.; Yang, Q.; Hou, X.; Chen, F. Nature-inspired superwettability achieved by femtosecond lasers. Ultrafast Sci. 2022, 2022, 895418. [Google Scholar]
- Huang, J.; Xu, K.; Xu, S. Super-resolution laser machining. Int. J. Mach. Tools Manuf. 2025, 205, 104246. [Google Scholar]
- Wang, J.; Yao, B.Q.; Cui, Z.; Zhang, Y.J.; Ju, Y.L.; Du, Y.Q. High efficiency actively Q-switched Ho: YVO4 laser pumped at room temperature. Laser Phys. Lett. 2014, 11, 085003. [Google Scholar]
- Ye, F.W.; Song, L.; Wang, Y.; Yang, Y.; Jin, R.B.; Jiang, J.Y.; Tao, H.Y.; Lin, J.Q. Femtosecond laser-based construction of 3D spatially distributed graphene oxide surface for enhancing boiling heat transfer. Int. J. Heat Mass Transf. 2025, 237, 126405. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, J.; Wang, G.; Yang, K.; Zhang, W. Controllable Preparation of Fused Silica Micro Lens Array through Femtosecond Laser Penetration-Induced Modification Assisted Wet Etching. Materials 2024, 17, 4231. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.G.; Wang, G.L.; Cheng, K.J.; Zhang, W.W. Efficient coupling of dual beam combined laser into micro water jet for deep processing. Sci. Rep. 2025, 15, 1083. [Google Scholar]
- Li, Z.Z.; Fan, H.; Wang, L.; Zhang, X.; Zhao, X.J.; Yu, Y.H.; Xu, Y.S.; Wang, Y.; Wang, X.J.; Juodkazis, S.; et al. Super-stealth dicing of transparent solids with nanometric precision. Nat. Photonics 2024, 18, 799–808. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, A.D.; Li, B.; Cui, T.H.; Lu, Y.F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: Modeling, method, measurement and application. Light Sci. Appl. 2018, 7, 17134. [Google Scholar]
- Xin, C.; Ren, Z.G.; Zhang, L.; Yang, L.; Wang, D.W.; Hu, Y.L.; Li, J.W.; Chu, J.R.; Zhang, L.; Wu, D. Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing. Nat. Commun. 2023, 14, 4273. [Google Scholar] [PubMed]
- Zhong, X.; Xie, S.; Guo, Z. The Challenge of superhydrophobicity: Environmentally facilitated Cassie-Wenzel transitions and structural design. Adv. Sci. 2024, 11, 2305961. [Google Scholar]
- Si, Y.; Dong, Z.; Jiang, L. Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Cent. Sci. 2018, 4, 1102–1112. [Google Scholar] [PubMed]
- Young, T. III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. A 1805, 95, 65–87. [Google Scholar]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar]
- Cassie, A.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar]
- Liu, M.; Wang, S.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036. [Google Scholar]
- Nawaz, T.; Paul, V.; Younus, S.; Ahmad, S.; Egilmez, M.; Abuzaid, W.; Boltaev, G.; Akbar, N.; Khamis, M.; Husseini, G.A.; et al. Biocompatibility and drug release kinetics of TiNbZrSn femtosecond laser-induced superhydrophilic structures. Appl. Surf. Sci. Adv. 2025, 25, 100665. [Google Scholar]
- He, Y.C.; Yin, K.; Wang, L.X.; Wu, T.N.; Deng, Q.W.; Dou, Y.P.; Arnusch, C.J. Magnetically actuated superhydrophilic robot sphere fabricated by a femtosecond laser for droplet steering. Nano Lett. 2023, 23, 4947–4955. [Google Scholar]
- Long, J.Y.; Xi, M.J.; Yang, P.F.; Huang, Z.G. Mechanisms of metal wettability transition and fabrication of durable superwetting/superhydrophilic metal surfaces. Appl. Surf. Sci. 2024, 654, 159497. [Google Scholar]
- Maghsoudi, K.; Vazirinasab, E.; Momen, G.; Jafari, R. Advances in the fabrication of superhydrophobic polymeric surfaces by polymer molding processes. Ind. Eng. Chem. Res. 2020, 59, 9343–9363. [Google Scholar]
- Wang, S.C.; Dong, S.Y.; Liu, X.T.; Yan, S.X. Multifunctional surface of titanium alloy with dual-scale hierarchical micro/nanostructures fabricated by femtosecond laser processing. Opt. Laser Technol. 2023, 164, 109423. [Google Scholar]
- Cao, J.K.; Ma, B.J.; Yang, Y.B.; Li, L.L.; Li, X.Y. Femtosecond laser preparation of Terracotta Warrior-like pit superhydrophobic structure on magnesium alloy with mechanical durability and corrosion resistance. Langmuir 2023, 39, 10230–10239. [Google Scholar] [PubMed]
- Zang, X.R.; Bian, J.; Ni, Y.M.; Zheng, W.W.; Zhu, T.X.; Chen, Z.; Cao, X.W.; Huang, J.Y.; Lai, Y.K.; Lin, Z.Q. A robust biomimetic superhydrophobic coating with superior mechanical durability and chemical stability for inner pipeline protection. Adv. Sci. 2024, 11, 2305839. [Google Scholar]
- Wang, D.; Sun, Q.; Hokkanen, M.J.; Wang, D.H.; Sun, Q.Q.; Hokkanen, M.J.; Zhang, C.L.; Lin, F.Y.; Liu, Q.; Zhu, S.P.; et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59. [Google Scholar]
- Yan, D.D.; Xu, W.J.; Zou, T.T.; Li, L.; Xu, J.P.; Zhang, R.Z.; Hu, L.J.; Yang, X.P.; Ma, H.; Yang, J.J. Durable organic coating-free superhydrophobic metal surface by paracrystalline state formation. Adv. Mater. 2025, 37, 2412850. [Google Scholar]
- Ge, C.F.; Yuan, G.; Guo, C.L.; Ngo, C.V.; Li, W. Femtosecond laser fabrication of square pillars integrated Siberian-Cocklebur-like microstructures surface for anti-icing. Mater. Des. 2021, 204, 109689. [Google Scholar]
- Yang, W.G.; Chu, H.H.; Cai, S.X.; Liang, W.F.; Yu, H.B.; Wang, Y.C.; Liu, L.Q. Micropatterned cell-repellent interface using femtosecond laser direct writing to engineer controlled cell organization. Adv. Mater. Technol. 2021, 6, 2100178. [Google Scholar]
- Zheng, J.; Qu, G.C.; Yang, B.; Wang, H.J.; Zhou, L.C.; Zhou, Z.R. Facile preparation of robust superhydrophobic ceramic surfaces with mechanical stability, durability, and self-cleaning function. Appl. Surf. Sci. 2022, 576, 151875. [Google Scholar]
- Jing, X.B.; Pu, Z.H.; Zheng, S.X.; Wang, F.J.; Qi, H. Nanosecond laser induced microstructure features and effects thereof on the wettability in zirconia. Ceram. Int. 2020, 46, 24173–24182. [Google Scholar]
- Zhu, Z.K.; Wu, P.C.; Juodkazis, S.; Wang, J.; Yao, S.B.; Yao, J.H.; Zhang, W.W. Superhydrophobic and anti-icing surface by femtosecond laser direct writing. Adv. Eng. Mater. 2023, 25, 2300575. [Google Scholar]
- Wang, J.; Wang, G.L.; Zhu, Z.K.; Zhang, W.W. Study on the superhydrophobic properties of micro/nano hole structure on the surface of glass fiber reinforced plastics based on femtosecond laser etching. Nanomaterials 2025, 15, 287. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jiao, Y.L.; Chen, C.; Zhu, S.W.; Li, C.Z.; Li, J.W.; Hu, Y.L.; Wu, D.; Chu, J.R. Reversible tuning between isotropic and anisotropic sliding by one-direction mechanical stretching on microgrooved slippery surfaces. Langmuir 2019, 35, 10625–10630. [Google Scholar] [PubMed]
- Wang, J.N.; Liu, Y.Q.; Zhang, Y.L.; Feng, J.; Wang, H.; Yu, Y.H.; Sun, H.B. Wearable superhydrophobic elastomer skin with switchable wettability. Adv. Funct. Mater. 2018, 28, 1800625. [Google Scholar]
- Wang, Y.B.; Sun, Y.Y.; Xue, Y.Q.; Sui, X.; Yuan, B.; Wang, Y.F.; Liang, W.Y. Functional surfaces with reversibly switchable wettability: Fundamentals, progresses, applications and challenges. Prog. Org. Coat. 2024, 188, 108167. [Google Scholar]
- Wang, J.; Zhao, Q.L.; Cui, H.Q.; Wang, Y.L.; Chen, H.X.; Du, X.M. Tunable shape memory polymer mold for multiple microarray replications. J. Mater. Chem. A 2018, 6, 24748–24755. [Google Scholar]
- Choe, A.; Yeom, J.; Kwon, Y.; Lee, Y.; Shin, Y.E.; Kim, J.; Ko, H. Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater. Horiz. 2020, 7, 3258–3265. [Google Scholar]
- Ma, L.L.; Wang, J.X.; He, J.M.; Yao, Y.L.; Zhu, X.D.; Peng, L.; Yang, J.; Liu, X.R.; Qu, M.N. Ultra-sensitive, durable and stretchable ionic skins with biomimetic micronanostructures for multi-signal detection, high-precision motion monitoring, and underwater sensing. J. Mater. Chem. A 2021, 9, 26949–26962. [Google Scholar]
- Bai, X.; Yang, Q.; Fang, Y.; Zhang, J.Z.; Yong, J.L.; Hou, X.; Chen, F. Superhydrophobicity-memory surfaces prepared by a femtosecond laser. Chem. Eng. J. 2020, 383, 123143. [Google Scholar]
- Li, C.Z.; Jiao, Y.L.; Li, D.Y.; Li, L.F.; Peng, Y.B.; Jiang, S.J.; Zhang, Y.Y.; Zhang, C.; Fan, S.Y.; Song, Q.R.; et al. Laser-induced morphology-switchable slanted shape memory microcones for maneuvering liquid droplets and dry adhesion. Appl. Phys. Lett. 2022, 120, 061603. [Google Scholar]
- Wang, Y.B.; Sun, Y.Y.; Xue, Y.Q.; Wang, F.X.; Liang, W.Y.; Wang, Y.H.; Zhu, D.Y.; Zhao, H.Y. Near-infrared light-responsive functionalised surfaces with shape memory microstructure for droplet manipulation and anti-icing/de-icing. Surf. Interfaces 2023, 40, 103056. [Google Scholar]
- Liu, Z.Y.; Ye, F.W.; Tao, H.Y.; Lin, J.Q. Effects of frost formation on the ice adhesion of micro-nano structure metal surface by femtosecond laser. J. Colloid Interface Sci. 2021, 603, 233–242. [Google Scholar] [PubMed]
- Liu, Z.; Tao, H.; Lin, J. Anisotropic ice adhesion of micro-nano-structured metal surface by a femtosecond laser. Langmuir 2021, 37, 9571–9576. [Google Scholar] [PubMed]
- Su, Y.; Wang, S.Q.; Yao, D.W.; Fu, Y.; Zang, H.W.; Xu, H.L.; Polynkin, P. Stand-off fabrication of irregularly shaped, multi-functional hydrophobic and antireflective metal surfaces using femtosecond laser filaments in air. Appl. Surf. Sci. 2019, 494, 1007–1012. [Google Scholar]
- Lin, Y.; Han, J.P.; Cai, M.Y.; Liu, W.J.; Luo, X.; Zhang, H.J.; Zhong, M.L. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J. Mater. Chem. A 2018, 6, 9049–9056. [Google Scholar]
- Song, Y.X.; Wang, C.; Dong, X.R.; Yin, K.; Zhang, F.; Xie, Z.; Chu, D.K.; Duan, J.A. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser. Opt. Laser Technol. 2018, 102, 25–31. [Google Scholar]
- Long, J.Y.; Pang, L.; Fan, P.X.; Gong, D.W.; Jiang, D.F.; Zhang, H.J.; Li, L.; Zhong, M.L. Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser. Langmuir 2016, 32, 1065–1072. [Google Scholar]
- Toosi, S.F.; Moradi, S.; Kamal, S.; Hatzikiriakos, S.G. Superhydrophobic laser ablated PTFE substrates. Appl. Surf. Sci. 2015, 349, 715–723. [Google Scholar]
- Yin, K.; Du, H.F.; Luo, Z.; Dong, X.R.; Duan, J.A. Multifunctional micro/nano-patterned PTFE near-superamphiphobic surfaces achieved by a femtosecond laser. Surf. Coat. Technol. 2018, 345, 53–60. [Google Scholar]
- Fan, W.Z.; Qian, J.; Bai, F.; Li, Y.B.; Wang, C.W.; Zhao, Q.Z. A facile method to fabricate superamphiphobic polytetrafluoroethylene surface by femtosecond laser pulses. Chem. Phys. Lett. 2016, 644, 261–266. [Google Scholar]
- Fang, Y.; Yong, J.L.; Chen, F.; Huo, J.L.; Yang, Q.; Zhang, J.Z.; Hou, X. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser. Adv. Mater. Interfaces 2018, 5, 1701245. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, L.D.; Zhang, Z.; Wu, S.Z.; Li, G.Q.; Wu, P.C.; Hu, Y.L.; Li, J.W.; Chu, J.R.; Wu, D. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection. RSC Adv. 2017, 7, 11170–11179. [Google Scholar]
- Chen, C.; Shi, L.A.; Huang, Z.C.; Hu, Y.L.; Wu, S.Z.; Li, J.W.; Wu, D.; Chu, J.R. Microhole-arrayed PDMS with controllable wettability gradient by one-step femtosecond laser drilling for ultrafast underwater bubble unidirectional self-transport. Adv. Mater. Interfaces 2019, 6, 1900297. [Google Scholar]
- Yang, H.; Xu, K.C.; Xu, C.W.; Fan, D.Y.; Cao, Y.; Xue, W.; Pang, J.H. Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency. Nanoscale Res. Lett. 2019, 14, 333. [Google Scholar] [PubMed]
- Wang, L.X.; Yin, K.; Zhu, Z.; Deng, Q.W.; Huang, Q.Q. Femtosecond laser engraving micro/nanostructured poly (ether-ether-ketone) surface with superhydrophobic and photothermal ability. Surf. Interfaces 2022, 31, 102013. [Google Scholar]
- Bai, X.; Yang, Q.; Fang, Y.; Yong, J.L.; Bai, Y.K.; Zhang, J.W.; Hou, X.; Chen, F. Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation. Chem. Eng. J. 2020, 400, 125930. [Google Scholar] [CrossRef]
- Bai, X.; Yang, Q.; Li, H.Y.; Huo, J.L.; Liang, J.; Hou, X.; Chen, F. Sunlight recovering the superhydrophobicity of a femtosecond laser-structured shape-memory polymer. Langmuir 2022, 38, 4645–4656. [Google Scholar]
- Zemaitis, A.; Mimidis, A.; Papadopoulos, A.; Gecys, P.; Raciukaitis, G.; Stratakis, E.; Gedvilas, M. Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes. RSC Adv. 2020, 10, 37956–37961. [Google Scholar]
- De Palo, R.; Mazzarone, A.E.; Volpe, A.; Gaudiuso, C.; Mezzapesa, F.P.; Spagnolo, V.; Ancona, A. Investigation of Laser-Induced Surface Structures (LIPSS) on quartz and evaluation of their influence on material wettability. Opt. Laser Technol. 2024, 169, 110097. [Google Scholar] [CrossRef]
- Ye, F.W.; Wang, Y.; Yang, Y.; Jin, R.B.; Jiang, J.Y.; Xu, J.; Tao, H.Y.; Lin, J.Q. An internal/external dual heat transfer mode constructed by femtosecond-laser direct writing for enhancing water boiling in graphene oxide surface. Appl. Therm. Eng. 2025, 263, 125343. [Google Scholar] [CrossRef]
- Song, L.; Chen, Z.L.; Guo, J.; Tao, H.Y.; Lin, J.Q. Directional drop rebound on adhesive-gradient micro–nanostructured surfaces formed by a femtosecond laser. Langmuir 2023, 39, 8033–8041. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.L.; Song, L.; Wang, Y.; Tao, H.Y.; Liu, Z.Y.; Wang, T.Q.; Ye, F.W.; He, Y.W.; Lin, J.Q. Air pocket-optimization strategy for micro/nanostructures fabricated by femtosecond laser technology for anti-icing performance improvement. Appl. Surf. Sci. 2024, 655, 159454. [Google Scholar] [CrossRef]
- Xuan, S.S.; Yin, H.; Li, G.Q.; Zhang, Z.X.; Jiao, Y.; Liao, Z.W.; Li, J.H.; Liu, S.Y.; Wang, Y.; Tang, C.N.; et al. Trifolium repens L.-like periodic micronano structured superhydrophobic surface with ultralow ice adhesion for efficient anti-icing/deicing. ACS Nano 2023, 17, 21749–21760. [Google Scholar] [PubMed]
- Pan, R.; Zhang, H.; Zhong, M. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication. ACS Appl. Mater. Interfaces 2020, 13, 1743–1753. [Google Scholar]
- Yong, J.L.; Chen, F.; Li, M.J.; Yang, Q.; Fang, Y.; Huo, J.L.; Hou, X. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. J. Mater. Chem. A 2017, 5, 25249–25257. [Google Scholar] [CrossRef]
- Cui, Z.H.; Zhang, Y.C.; Zhang, Z.C.; Liu, B.R.; Chen, Y.Y.; Wu, H.; Zhang, Y.X.; Cheng, Z.L.; Li, G.Q.; Yong, J.L.; et al. Durable Janus membrane with on-demand mode switching fabricated by femtosecond laser. Nat. Commun. 2024, 15, 1443. [Google Scholar]
- Su, Y.H.; Chen, L.; Jiao, Y.L.; Zhang, J.; Li, C.; Zhang, Y.Y.; Zhang, Y.C. Hierarchical hydrophilic/hydrophobic/bumpy Janus membrane fabricated by femtosecond laser ablation for highly efficient fog harvesting. ACS Appl. Mater. Interfaces 2021, 13, 26542–26550. [Google Scholar] [CrossRef]
- Yu, J.; Wu, J.E.; Yang, H.; Li, P.; Liu, J.; Wang, M.; Pang, J.H.; Li, C.B.; Yang, C.; Xu, K.C. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platform. ACS Appl. Mater. Interfaces 2022, 14, 43877–43885. [Google Scholar]
- Li, H.J.; Li, X.H.; Liu, J.S.; Xuan, S.S.; Li, G.Q.; Zhang, W.X.; Liao, J.H. Self-positioning surface-enhanced Raman scattering substrates with gradient wettability. Surf. Interfaces 2025, 56, 105585. [Google Scholar]
- Qu, Z.H.; Sun, S.F.; Wang, J.; Jiang, M.M.; Zhang, F.Y.; Wang, X.; Shao, J.; Liang, G.L.; Wang, P.P. Application of ultrafast laser beam shaping in micro-optical elements. J. Laser Appl. 2023, 35, 0312202. [Google Scholar]
- Cheng, J.Y.; Gu, C.L.; Zhang, D.P.; Chen, S.C. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device. Opt. Lett. 2015, 40, 4875–4878. [Google Scholar]
- Zhang, Z.; Song, Q.; Zhang, K.P.; Xue, M.; Hou, Y.; Zhang, Z.C. Simulation and experimental research on flat top femtosecond laser grooving of silicon wafer. Chin. J. Lasers 2023, 50, 2002202. [Google Scholar]
- Zhao, W.W.; Li, X.W.; Xia, B.; Yan, X.L.; Han, W.N.; Lu, Y.F.; Jiang, L. Single-pulse femtosecond laser Bessel beams drilling of high-aspect-ratio microholes based on electron dynamics control. In Proceedings of the SPIE—The International Society for Optical Engineering; Department of Electronics & Computer Engineering: Kusatsu, Japan, 2014; Volume 12, p. 2073604. [Google Scholar]
- Tan, Y.X.; Lv, H.T.; Wen, Z.R.; Cheng, G.H.; Mou, Z.C.; Luo, H.Y.; Ren, Y.Y.; Song, Y.; Xu, J.; Cheng, Y. Slit shaping technique for femtosecond laser direct write fabrication of two-dimensional symmetric waveguide arrays in silica glass. Opt. Laser Technol. 2024, 182, 112146. [Google Scholar]
- He, Z.Q.; Yang, D.H.; Zhang, M.Y.; Liao, J.B.; Liu, Y.; Li, L. Coupling effect of evaporation-plasma shielding and its influence on femtosecond laser ablation. Appl. Phys. A-Mater. Sci. Process. 2024, 130, 935. [Google Scholar]
- Balage, P.; Lopez, J.; Guilberteau, T.; Lafargue, M.; Bonamis, G.; Hönninger, C.; Inka-Manek-Hönninger. Through glass via drilling using GHz-bursts of femtosecond pulses: Challenges and implementation. J. Laser Micro Nanoeng. 2024, 19, 214–220. [Google Scholar]
- Balage, P.; Guilberteau, T.; Lafargue, M.; Bonamis, G.; Hönninger, C.; Lopez, J.; Manek-Hönninger, I. Bessel beam dielectrics cutting with femtosecond laser in GHz-burst mode. Micromachines 2023, 14, 1650. [Google Scholar] [CrossRef] [PubMed]
- Kuo, J.F.; Cheng, C.W. Fabrication of grooves on 4H-SiC using femtosecond laser vector beam. Opt. Commun. 2024, 574, 131200. [Google Scholar] [CrossRef]
- Li, Z.Q.; Allegre, O.; Li, L. Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus. Light Sci. Appl. 2022, 11, 339. [Google Scholar] [PubMed]
- Zhang, D.S.; Liu, R.J.; Li, Z.G. Irregular LIPSS produced on metals by single linearly polarized femtosecond laser. Int. J. Extrem. Manuf. 2022, 4, 015102. [Google Scholar]
- Gong, A.; Lin, G.; Pan, P.H.; Sun, H.P.; Song, S.Y.; Ji, P.F. Theoretical modeling and experimental study in femtosecond Bessel beam ablation of α-quartz. Opt. Laser Technol. 2024, 178, 111227. [Google Scholar] [CrossRef]
- Momeni, A.; Sugioka, K. Numerical simulation of silicon laser ablation with GHz bursts of femtosecond pulses. J. Laser Micro Nanoeng. 2023, 18, 109–114. [Google Scholar]
- Cheng, J.; Liao, J.F.; He, Z.T.; Zhang, L.; Liu, B.; Chen, L.; Yang, Q.B.; Lou, D.Y.; Tao, Q.; Li, Q.L.; et al. Continuous GHz femtosecond laser interacting with aluminum film: Simulation and experiment. Opt. Laser Technol. 2024, 175, 110792. [Google Scholar] [CrossRef]
- Su, Y.C.; Chen, X.; Zhong, Y.; Zou, B.; Wang, Y.Q. Numerical simulation of the polarized femtosecond laser propagation in silica and self-compression. Acta Opt. Sin. 2010, 30, 2639. [Google Scholar]
- Skolski, J.Z.P.; Römer, G.R.B.E.; Obona, J.V.; Ocelik, V.; in’t Veld, A.J.H.; De Hosson, J.T.M. Laser-induced periodic surface structures: Fingerprints of light localization. Phys. Rev. B 2012, 85, 075320. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, Z.W.; Wang, X.Q.; Ji, C.L.; Zhu, S.W.; Qi, D.F.; Zheng, H.Y. Influence of beam polarization on underwater femtosecond laser machining of silicon wafer. J. Manuf. Process. 2024, 128, 41–49. [Google Scholar] [CrossRef]
- Liu, Z.A.; Liu, H.; Li, W.; Song, J.L. Optimization of bioinspired surfaces with enhanced water transportation capacity. Chem. Eng. J. 2022, 433, 134568. [Google Scholar] [CrossRef]
- Yong, J.L.; Fang, Y.; Chen, F.; Huo, J.L.; Yang, Q.; Bian, H.; Du, G.Q.; Hou, X. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions. Appl. Surf. Sci. 2016, 389, 1148–1155. [Google Scholar] [CrossRef]
- Yao, Y.S.; Meng, Q.S.; Peng, Y.B.; Cheng, Z.L.; Li, X.L.; Xu, T.Y.; Yong, J.L. Highly efficient removal of bubbles from water pipes by femtosecond laser-designed superhydrophobic porous microstructures. Appl. Phys. Lett. 2023, 123, 211601. [Google Scholar] [CrossRef]
- Xuan, S.S.; Yin, H.; Li, G.Q.; Yang, Y.; Wang, Y.; Liu, J.S.; Liu, S.Y.; Li, X.H.; Song, Y.G.; Wu, T.N.; et al. Femtosecond laser composite manufacturing double bionic micro-nano structure for efficient photothermal anti-icing/deicing. Mater. Horiz. 2024, 11, 3561–3572. [Google Scholar] [CrossRef]
- He, W.Y.; Yao, P.; Chu, D.K.; Sun, H.Q.; Lai, Q.G.; Wang, Q.W.; Wang, P.F.; Qu, S.S.; Huang, C.Z. Fabrication and cell-adhesion evaluation of laser-ablated microprotrusion or microgroove on titanium. Chin. J. Lasers 2022, 49, 1002605. [Google Scholar]
- Xiao, P.L.; Chen, G.H.; Chen, Y. Morphology and wettability of titanium alloy surface textured by femtosecond laser. Chin. J. Lasers 2023, 50, 1602208. [Google Scholar]
- Cheng, Y.; Yang, Q.; Lu, Y.; Yong, J.; Fang, Y.; Hou, X.; Chen, F. A femtosecond Bessel laser for preparing a nontoxic slippery liquid-infused porous surface (SLIPS) for improving the hemocompatibility of NiTi alloys. Biomater. Sci. 2020, 8, 6505–6514. [Google Scholar] [CrossRef] [PubMed]
Target | Frequency (kHz) | Wavelength (nm) | Pulse Width (fs) | Laser Energy | WCA (°) | Ref. | |
---|---|---|---|---|---|---|---|
Intrinsic hydrophilic materials | Ni | 1 | 800 | 50 | 1–2 mJ | 153.0 | [52] |
Al | 400 | 1030 | 400 | − | >150.0 | [53] | |
Stainless steel | 0.5 | 800 | 35 | 1.6 mJ | 156.9 | [54] | |
Silica glass | 200 | 1030 | 800 | 100 μJ | 161.0 | [55] | |
Al | 75 | 1030 | 1000 | 1–10 W | 163.5 | [56] | |
Cu | 200 | 1030 | 800 | 7.08 J/cm2 | >150.0 | [57] | |
Intrinsic hydrophobic materials | PTFE | 1 | 800 | 140 | 51 J/cm2 | 170.0 | [58] |
PTFE | 75 | 1030 | 250 | 11 W | 157.0 | [59] | |
PTFE | 1 | 800 | 300 | 25 mW | 158.6 | [60] | |
PDMS | 1 | 800 | 50 | 30 mW | 156.0 | [61] | |
PDMS | 1 | 800 | 100 | 0.72 J/cm2 | 155.4 | [62] | |
PDMS | 1 | 800 | 104 | 350 mW | 174.0 | [63] | |
Rubber | 1 | 800 | 100 | 136.2 J/cm2 | 153.1 | [64] | |
PEEK | 100 | 1035 | 350 | 900 mW | 165.2 | [65] | |
Smart materials with switching wettability | 1 | 800 | 50 | 30 mW | 153.5 | [49] | |
1 | 800 | 50 | 100 mW | 156.3 | [66] | ||
1 | 800 | 50 | 30 mW | 152.8 | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhou, J.; Cen, W.; Yan, Y.; Guo, W. Femtosecond Laser Fabrication of Wettability-Functional Surfaces: A Review of Materials, Structures, Processing, and Applications. Nanomaterials 2025, 15, 573. https://doi.org/10.3390/nano15080573
Chen Z, Zhou J, Cen W, Yan Y, Guo W. Femtosecond Laser Fabrication of Wettability-Functional Surfaces: A Review of Materials, Structures, Processing, and Applications. Nanomaterials. 2025; 15(8):573. https://doi.org/10.3390/nano15080573
Chicago/Turabian StyleChen, Zelin, Jiantao Zhou, Wenyang Cen, Yinzhou Yan, and Wei Guo. 2025. "Femtosecond Laser Fabrication of Wettability-Functional Surfaces: A Review of Materials, Structures, Processing, and Applications" Nanomaterials 15, no. 8: 573. https://doi.org/10.3390/nano15080573
APA StyleChen, Z., Zhou, J., Cen, W., Yan, Y., & Guo, W. (2025). Femtosecond Laser Fabrication of Wettability-Functional Surfaces: A Review of Materials, Structures, Processing, and Applications. Nanomaterials, 15(8), 573. https://doi.org/10.3390/nano15080573