Direct Glass-to-Metal Welding by Femtosecond Laser Pulse Bursts: I, Conditions for Successful Welding with a Gap †
Abstract
1. Introduction
Conditions for Successful Welding
2. Methodology
2.1. Glass-to-Metal Welding Setup
2.2. Lidt Evaluation of the Samples
3. Results and Discussion
3.1. The Influence of the Pulse Energy
3.2. The Influence of the Focus Position
3.3. The Influence of the Gap Size
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cvecek, K.; Dehmel, S.; Miyamoto, I.; Schmidt, M. A review on glass welding by ultra-short laser pulses. Int. J. Extrem. Manuf. 2019, 1, 042001. [Google Scholar] [CrossRef]
- Jia, X.; Luo, J.; Li, K.; Wang, C.; Li, Z.; Wang, M.; Jiang, Z.; Veiko, V.P.; Duan, J. Ultrafast laser welding of transparent materials: From principles to applications. Int. J. Extrem. Manuf. 2025, 7, 032001. [Google Scholar] [CrossRef]
- Richter, S.; Zimmermann, F.; Döring, S.; Tünnermann, A.; Nolte, S. Ultrashort high repetition rate exposure of dielectric materials: Laser bonding of glasses analyzed by micro-Raman spectroscopy. Appl. Phys. A 2013, 110, 9–15. [Google Scholar] [CrossRef]
- Penilla, E.; Devia-Cruz, L.; Wieg, A.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, J. Ultrafast laser welding of ceramics. Science 2019, 365, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.M.; Chen, J.; Shephard, J.D.; Thomson, R.R.; Hand, D.P. Picosecond laser welding of similar and dissimilar materials. Appl. Opt. 2014, 53, 4233–4238. [Google Scholar] [CrossRef]
- Miyamoto, I.; Okamoto, Y.; Hansen, A.; Vihinen, J.; Amberla, T.; Kangastupa, J. High speed, high strength microwelding of Si/glass using ps-laser pulses. Opt. Express 2015, 23, 3427–3439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bai, J.; Zhao, W.; Zhou, K.; Cheng, G. Interface modification based ultrashort laser microwelding between SiC and fused silica. Opt. Express 2017, 25, 1702–1709. [Google Scholar] [CrossRef]
- Chambonneau, M.; Li, Q.; Fedorov, V.Y.; Blothe, M.; Schaarschmidt, K.; Lorenz, M.; Tzortzakis, S.; Nolte, S. Taming ultrafast laser filaments for optimized semiconductor–metal welding. Laser Photonics Rev. 2021, 15, 2000433. [Google Scholar] [CrossRef]
- Richter, S.; Zimmermann, F.; Eberhardt, R.; Tünnermann, A.; Nolte, S. Toward laser welding of glasses without optical contacting. Appl. Phys. A 2015, 121, 1–9. [Google Scholar] [CrossRef]
- Cvecek, K.; Odato, R.; Dehmel, S.; Miyamoto, I.; Schmidt, M. Gap bridging in joining of glass using ultra short laser pulses. Opt. Express 2015, 23, 5681–5693. [Google Scholar] [CrossRef]
- Chen, J.; Carter, R.M.; Thomson, R.R.; Hand, D.P. Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding. Opt. Express 2015, 23, 18645–18657. [Google Scholar] [CrossRef]
- Carter, R.M.; Troughton, M.; Chen, J.; Elder, I.; Thomson, R.R.; Esser, M.D.; Lamb, R.A.; Hand, D.P. Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy. Appl. Opt. 2017, 56, 4873–4881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cheng, G. Direct welding of glass and metal by 1 kHz femtosecond laser pulses. Appl. Opt. 2015, 54, 8957–8961. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Duan, J.; Yang, Z.; Xiong, W.; Deng, L. Picosecond laser seal welding of glasses with a large gap. Opt. Express 2019, 27, 30297–30307. [Google Scholar] [CrossRef]
- Murzakov, M.A.; Evtikhiev, N.N.; Grezev, N.V.; Kataev, D.; Antipov, D.A.; Bindyug, D.V. Study on the Effect of Focusing Parameters of Ultrashort Pulses on the Process of Laser Welding of Transparent Materials with Metals. Bull. Lebedev Phys. Inst. 2024, 51, S297–S304. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, C.; Ren, H.; Wei, X.; Shen, H. Welding threshold in ultrafast laser welding of quartz glass and 304 stainless steel. Opt. Laser Technol. 2025, 181, 111622. [Google Scholar] [CrossRef]
- Yoshitake, S.; Ito, Y.; Miyamoto, N.; Yoshizaki, R.; Sugita, N. Ultrafast and large-gap microwelding of glass substrates by selective absorption of continuous-wave laser into transiently excited electrons. CIRP Ann. 2022, 71, 157–160. [Google Scholar] [CrossRef]
- Matsuyoshi, S.; Mizuguchi, Y.; Muratsugu, A.; Yamada, H.; Tamaki, T.; Watanabe, W. Welding of Glass and Copper with a Rough Surface using Femtosecond Fiber Laser Pulses. J. Laser Micro Nanoeng. 2018, 13, 21–25. [Google Scholar]
- Ciuca, O.P.; Carter, R.M.; Prangnell, P.B.; Hand, D.P. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds. Mater. Charact. 2016, 120, 53–62. [Google Scholar] [CrossRef]
- Günther, L.; Thomas, J.U.; Hermann, J.; Ohlinger, A.; de Ligny, D. Ultra-Short-Pulse Laser Welding of Glass to Metal with a Shear Strength Above 50 MPa. Micromachines 2025, 16, 538. [Google Scholar] [CrossRef]
- Huo, J.; Zeng, Z.; Yuan, J.; Luo, M.; Luo, A.; Li, J.; Yang, H.; Zhao, N.; Zhang, Q. Welding between rough copper foil and silica glass using green4 femtosecond laser. Opt. Laser Technol. 2025, 181, 111804. [Google Scholar] [CrossRef]
- Ren, H.; Tian, C.; Shen, H. Ultrafast laser bursts welding glass and metal with solder paste to create an ultra-large molten pool. Opt. Lett. 2024, 49, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- ISO/R 857:1968; Definitions of Welding Processes. International Organization of Standardization: Geneva, Switzerland, 1968.
- Messler, R.W., Jr. A Practical Guide to Welding Solutions: Overcoming Technical and Material-Specific Issues; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Zackay, V.F.; Mitchell, D.W.; Mitoff, S.P.; Pask, J.A. Fundamentals of Glass-to-Metal Bonding: I, Wettability of Some Group I and Group VIII Metals by Sodium Silicate Glass. J. Am. Ceram. Soc. 1953, 36, 84–89. [Google Scholar] [CrossRef]
- Volpe, M.L.; Fulrath, R.M.; Pask, J.A. Fundamentals of Glass-to-Metal Bonding: IV, Wettability of Gold and Platinum by Molten Sodium DisiIicate. J. Am. Ceram. Soc. 1959, 42, 102–106. [Google Scholar] [CrossRef]
- Pask, J.A.; Fulrath, R.M. Fundamentals of glass-to-metal bonding: VIII, nature of wetting and adherence. J. Am. Ceram. Soc. 1962, 45, 592–596. [Google Scholar] [CrossRef]
- Lee, L.H. The chemistry and physics of solid adhesion. In Fundamentals of Adhesion; Springer: Berlin/Heidelberg, Germany, 1991; pp. 1–86. [Google Scholar]
- Zimmermann, F.; Richter, S.; Döring, S.; Tünnermann, A.; Nolte, S. Ultrastable bonding of glass with femtosecond laser bursts. Appl. Opt. 2013, 52, 1149–1154. [Google Scholar] [CrossRef]
- Mishchik, K.; Beuton, R.; Dematteo Caulier, O.; Skupin, S.; Chimier, B.; Duchateau, G.; Chassagne, B.; Kling, R.; Hönninger, C.; Mottay, E.; et al. Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses. Opt. Express 2017, 25, 33271–33282. [Google Scholar] [CrossRef]
- Li, Q.; Luo, F.; Matthäus, G.; Sohr, D.; Nolte, S. Direct Glass-to-Metal Welding by Femtosecond Laser Pulse Bursts: II, Enhancing the weld of glass to polished metal surfaces. Nanomaterials 2025. Accepted. [Google Scholar]
- Glover, T.E. Hydrodynamics of particle formation following femtosecond laser ablation. JOSA B 2003, 20, 125–131. [Google Scholar] [CrossRef]
- Scholz, T.; Dickmann, K. Investigation on particle formation during laser ablation process with high brilliant radiation. Phys. Procedia 2010, 5, 311–316. [Google Scholar] [CrossRef]
- Dinca, V.; Patrascioiu, A.; Fernández-Pradas, J.; Morenza, J.; Serra, P. Influence of solution properties in the laser forward transfer of liquids. Appl. Surf. Sci. 2012, 258, 9379–9384. [Google Scholar] [CrossRef]
- Li, Q.; Alloncle, A.P.; Grojo, D.; Delaporte, P. Laser-induced nano-jetting behaviors of liquid metals. Appl. Phys. A 2017, 123, 718. [Google Scholar] [CrossRef]
- Li, Q.; Grojo, D.; Alloncle, A.P.; Delaporte, P. Jetting regimes of double-pulse laser-induced forward transfer. Opt. Mater. Express 2019, 9, 3476–3486. [Google Scholar] [CrossRef]
- Li, Q.; Chambonneau, M.; Blothe, M.; Gross, H.; Nolte, S. A flexible, fast and benchmarked vectorial model for focused laser beams. arXiv 2021, arXiv:2102.13414. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Matthäus, G.; Sohr, D.; Nolte, S. Direct Glass-to-Metal Welding by Femtosecond Laser Pulse Bursts: I, Conditions for Successful Welding with a Gap. Nanomaterials 2025, 15, 1202. https://doi.org/10.3390/nano15151202
Li Q, Matthäus G, Sohr D, Nolte S. Direct Glass-to-Metal Welding by Femtosecond Laser Pulse Bursts: I, Conditions for Successful Welding with a Gap. Nanomaterials. 2025; 15(15):1202. https://doi.org/10.3390/nano15151202
Chicago/Turabian StyleLi, Qingfeng, Gabor Matthäus, David Sohr, and Stefan Nolte. 2025. "Direct Glass-to-Metal Welding by Femtosecond Laser Pulse Bursts: I, Conditions for Successful Welding with a Gap" Nanomaterials 15, no. 15: 1202. https://doi.org/10.3390/nano15151202
APA StyleLi, Q., Matthäus, G., Sohr, D., & Nolte, S. (2025). Direct Glass-to-Metal Welding by Femtosecond Laser Pulse Bursts: I, Conditions for Successful Welding with a Gap. Nanomaterials, 15(15), 1202. https://doi.org/10.3390/nano15151202