Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
Abstract
1. Introduction
2. Material Issues in Regenerating Bone Tissue
2.1. Criteria for NM-Structured Scaffolding
2.2. Schematic Design and Materials
2.3. Influence of Nanomaterials in Angiogenesis and Osteogenesis
3. Nanomaterials for Developing Bone Scaffolds
3.1. Inorganic Biominerals and Composites
3.1.1. Calcium Phosphate Derivatives
3.1.2. Oxide-Based Nanoparticles
Graphene Oxide (GO), Reduced Graphene Oxide (rGO), and Composites
Magnesium Oxide (MgO) NMs and Composites
Zinc Oxide (ZnO) NMs and Composites
Titanium Oxides (TiO2) NMs and Composites
Silicon Dioxide (SiO2) NMs and Composites
Magnetic Iron Oxides (IO) NMs and Composites
3.1.3. Polymers and Polymeric Nanostructure
Polylactic-Co-Glycolic Acid (PLGA) and Composites
Poly Lactic Acid (PLA) and Composites
Polyglycolic Acid (PGA) and Composites
Poly Caprolactone (PCL) and Composites
4. Regulatory and Commercial Aspects of NMs-Based Scaffold
5. Unmet Challenges and Future Opportunities
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res. 2017, 5, 17059. [Google Scholar] [CrossRef] [PubMed]
- Longoni, A.; Knezevic, L.; Schepers, K.; Weinans, H.; Rosenberg, A.; Gawlitta, D. The impact of immune response on endochondral bone regeneration. Npj Regen. Med. 2018, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhang, T.; Chen, M.; Yao, K.; Huang, X.; Zhang, B.; Li, Y.; Liu, J.; Wang, Y.; Zhao, Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021, 6, 4110–4140. [Google Scholar] [CrossRef] [PubMed]
- Marrella, A.; Lee, T.; Lee, D.; Karuthedom, S.; Syla, D.; Chawla, A.; Khademhosseini, A.; Jang, H. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater. Today 2018, 21, 362–376. [Google Scholar] [CrossRef]
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P. Bone regeneration: Current concepts and future directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef]
- Wisanuyotin, T.; Paholpak, P.; Sirichativapee, W.; Kosuwon, W. Allograft versus autograft for reconstruction after resection of primary bone tumors: A comparative study of long-term clinical outcomes and risk factors for failure of reconstruction. Sci. Rep. 2022, 12, 14346. [Google Scholar] [CrossRef]
- Li, Q.; Lan, P. Activation of immune signals during organ transplantation. Signal Transduct. Target. Ther. 2023, 8, 110. [Google Scholar] [CrossRef]
- Sakkas, A.; Schramm, A.; Winter, K.; Wilde, F. Risk factors for post-operative complications after procedures for autologous bone augmentation from different donor sites. J. Cranio-Maxillofac. Surg. 2018, 46, 312–322. [Google Scholar] [CrossRef]
- Bhumiratana, S.; Bernhard, J.; Alfi, D.; Yeager, K.; Eton, R.; Bova, J.; Shah, F.; Gimble, J.; Lopez, M.; Eisig, S.; et al. Tissue-engineered autologous grafts for facial bone reconstruction. Sci. Transl. Med. 2016, 8, 343ra83. [Google Scholar] [CrossRef]
- Hutmacher, D. Bone regeneration based on tissue engineering conceptions—A 21st century perspective. Hum. Gene Ther. 2013, 24, A27. [Google Scholar]
- Koons, G.; Diba, M.; Mikos, A. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020, 5, 584–603. [Google Scholar] [CrossRef]
- Madry, H.; van Dijk, C.; Mueller-Gerbl, M. The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 419–433. [Google Scholar] [CrossRef]
- Thompson, E.; Matsiko, A.; Farrell, E.; Kelly, D.; O’Brien, F. Recapitulating endochondral ossification: A promising route to in vivo bone regeneration. J. Tissue Eng. Regen. Med. 2015, 9, 889–902. [Google Scholar] [CrossRef]
- Comazzetto, S.; Shen, B.; Morrison, S. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell 2021, 56, 1848–1860. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Xue, N.; Ding, X.; Huang, R.; Jiang, R.; Huang, H.; Pan, X.; Min, W.; Chen, J.; Duan, J.; Liu, P.; et al. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals 2022, 15, 879. [Google Scholar] [CrossRef] [PubMed]
- Tariverdian, T.; Sefat, F.; Gelinsky, M.; Mozafari, M. Scaffold for bone tissue engineering. In Handbook of Tissue Engineering Scaffolds; Woodhead Publ Ltd.: Cambridge, UK, 2019; Volume 1, pp. 189–209. [Google Scholar] [CrossRef]
- Szwed-Georgiou, A.; Plocinski, P.; Kupikowska-Stobba, B.; Urbaniak, M.; Rusek-Wala, P.; Szustakiewicz, K.; Piszko, P.; Krupa, A.; Biernat, M.; Gazinska, M.; et al. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater. Sci. Eng. 2023, 9, 5222–5254. [Google Scholar] [CrossRef]
- Brewer, M.; Zhang, T.; Dong, W.; Rutherford, M.; Tian, Z. Future approaches of nanomedicine in clinical science. Med. Clin. N. Am. 2007, 91, 963–1016. [Google Scholar] [CrossRef]
- Christy, P.; Basha, S.; Kumari, V.; Bashir, A.; Maaza, M.; Kaviyarasu, K.; Arasu, M.; Al-Dhabi, N.; Ignacimuthu, S. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications—A review. J. Drug Deliv. Sci. Technol. 2020, 55, 101452. [Google Scholar] [CrossRef]
- Guo, X.; Huang, L. Recent Advances in Nonviral Vectors for Gene Delivery. Acc. Chem. Res. 2012, 45, 971–979. [Google Scholar] [CrossRef]
- Li, Y.; Ye, D.; Li, M.; Ma, M.; Gu, N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. Chemphyschem 2018, 19, 1965–1979. [Google Scholar] [CrossRef]
- Sun, W.; Ye, B.; Chen, S.; Zeng, L.; Lu, H.; Wan, Y.; Gao, Q.; Chen, K.; Qu, Y.; Wu, B.; et al. Neuro-bone tissue engineering: Emerging mechanisms, potential strategies, and current challenges. Bone Res. 2023, 11, 65. [Google Scholar] [CrossRef]
- Yi, H.; Rehman, F.; Zhao, C.; Liu, B.; He, N. Recent advances in nano scaffolds for bone repair. Bone Res. 2016, 4, 16050. [Google Scholar] [CrossRef]
- Walmsley, G.; McArdle, A.; Tevlin, R.; Momeni, A.; Atashroo, D.; Hu, M.; Feroze, A.; Wong, V.; Lorenz, P.; Longaker, M.; et al. Nanotechnology in bone tissue engineering. Nanomed.-Nanotechnol. Biol. Med. 2015, 11, 1253–1263. [Google Scholar] [CrossRef]
- Huang, T.; Zeng, Y.; Li, C.; Zhou, Z.; Xu, J.; Wang, L.; Yu, D.; Wang, K. Application and Development of Electrospun Nanofiber Scaffolds for Bone Tissue Engineering. ACS Biomater. Sci. Eng. 2024, 10, 4114–4144. [Google Scholar] [CrossRef] [PubMed]
- Udomluck, N.; Koh, W.; Lim, D.; Park, H. Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering. Int. J. Mol. Sci. 2020, 21, 99. [Google Scholar] [CrossRef] [PubMed]
- Samadian, H.; Khastar, H.; Ehterami, A.; Salehi, M. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: In vitro and in vivo study. Sci. Rep. 2021, 11, 13877. [Google Scholar] [CrossRef]
- Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y. Nanomaterials and bone regeneration. Bone Res. 2015, 3, 15029. [Google Scholar] [CrossRef]
- Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30, 546–554. [Google Scholar] [CrossRef]
- Olszta, M.; Cheng, X.; Jee, S.; Kumar, R.; Kim, Y.; Kaufman, M.; Douglas, E.; Gower, L. Bone structure and formation: A new perspective. Mater. Sci. Eng. R-Rep. 2007, 58, 77–116. [Google Scholar] [CrossRef]
- Williams, D. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, T.; Epstein, J.; Cooney, L.; Wang, H.; Li, Y.; Jiang, Y.; Cogbill, A.; Varadan, V.; Tian, Z. Multifunctional nanowire bioscaffolds on titanium. Chem. Mater. 2007, 19, 4454–4459. [Google Scholar] [CrossRef]
- Dong, W.; Cogbill, A.; Zhang, T.; Ghosh, S.; Tian, Z. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. J. Phys. Chem. B 2006, 110, 16819–16822. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.; Haugh, M.; O’Brien, F. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010, 31, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Roohani-Esfahani, S.; Newman, P.; Zreiqat, H. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Sci. Rep. 2016, 6, 19468. [Google Scholar] [CrossRef]
- Lee, S.; Du, X.; Kim, I.; Ferguson, S. Scaffolds for bone-tissue engineering. Matter 2022, 5, 2722–2759. [Google Scholar] [CrossRef]
- Mukasheva, F.; Adilova, L.; Dyussenbinov, A.; Yernaimanova, B.; Abilev, M.; Akilbekova, D. Optimizing scaffold pore size for tissue engineering: Insights across various tissue types. Front. Bioeng. Biotechnol. 2024, 12, 1444986. [Google Scholar] [CrossRef]
- Barabashko, M.; Ponomarev, A.; Rezvanova, A.; Kuznetsov, V.; Moseenkov, S. Young’s Modulus and Vickers Hardness of the Hydroxyapatite Bioceramics with a Small Amount of the Multi-Walled Carbon Nanotubes. Materials 2022, 15, 5304. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in Oral Care Products-A Review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef]
- Romagnoli, M.; Casali, M.; Zaffagnini, M.; Cucurnia, I.; Raggi, F.; Reale, D.; Grassi, A.; Zaffagnini, S. Tricalcium Phosphate as a Bone Substitute to Treat Massive Acetabular Bone Defects in Hip Revision Surgery: A Systematic Review and Initial Clinical Experience with 11 Cases. J. Clin. Med. 2023, 12, 1820. [Google Scholar] [CrossRef]
- Feng, J.; Liu, J.; Wang, Y.; Diao, J.; Kuang, Y.; Zhao, N. Beta-TCP scaffolds with rationally designed macro-micro hierarchical structure improved angio/osteo-genesis capability for bone regeneration. J. Mater. Sci.-Mater. Med. 2023, 34, 36. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, E.; Zankovic, S.; Vinke, J.; Schmal, H.; Seidenstuecker, M. About the mechanical strength of calcium phosphate cement scaffolds. Designs 2023, 7, 87. [Google Scholar] [CrossRef]
- Wiltfang, J.; Merten, H.; Schlegel, K.; Schultze-Mosgau, S.; Kloss, F.; Rupprecht, S.; Kessler, P. Degradation characteristics of α and β tri-calcium- phosphate (TCP) in Minipigs. J. Biomed. Mater. Res. 2002, 63, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Gao, H.; Liu, X.; Diao, J.; Shi, X.; Zhao, N.; Wang, Y. Porous Li-containing biphasic calcium phosphate scaffolds fabricated by three-dimensional plotting for bone repair. RSC Adv. 2017, 7, 34508–34516. [Google Scholar] [CrossRef]
- Hong, M.; Kim, S.; Lee, Y. Mechanical and Biological Properties of Biphasic Calcium Phosphate Scaffold depending on Different Nanoparticle Fabrication Methods. J. Ceram. Sci. Technol. 2017, 8, 541–545. [Google Scholar] [CrossRef]
- Cao, Q.; Geng, X.; Wang, H.; Wang, P.; Liu, A.; Lan, Y.; Peng, Q. A Review of Current Development of Graphene Mechanics. Crystals 2018, 8, 357. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, J.; Lu, K.; Wang, Z.; Yin, L.; Zheng, H.; Wang, X.; Mao, L.; Xing, B. Biodegradation of Graphene Oxide by Insects (Tenebrio molitor Larvae): Role of the Gut Microbiome and Enzymes. Environ. Sci. Technol. 2022, 56, 16737–16747. [Google Scholar] [CrossRef]
- Jung, S.; Jang, W.; Beom, B.; Won, J.; Jeong, J.; Choi, Y.; Moon, M.; Cho, E.; Chang, K.; Han, J. Synthesis of Highly Porous Graphene Oxide-PEI Foams for Enhanced Sound Absorption in High-Frequency Regime. Polymers 2024, 16, 2983. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Zhao, J.; Liu, F. Mechanical properties of graphene oxides. Nanoscale 2012, 4, 5910–5916. [Google Scholar] [CrossRef]
- Newman, L.; Jasim, D.; Prestat, E.; Lozano, N.; de Lazaro, I.; Nam, Y.; Assas, B.; Pennock, J.; Haigh, S.; Bussy, C.; et al. Splenic Capture and In Vivo Intracellular Biodegradation of Biological-Grade Graphene Oxide Sheets. ACS Nano 2020, 14, 10168–10186. [Google Scholar] [CrossRef]
- Huo, L.; Li, Q.; Jiang, L.; Jiang, H.; Zhao, J.; Yang, K.; Dong, Q.; Shao, Y.; Chu, C.; Xue, F.; et al. Porous Mg-Zn-Ca scaffolds for bone repair: A study on microstructure, mechanical properties and in vitro degradation behavior. J. Mater. Sci.-Mater. Med. 2024, 35, 22. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, T.; Meng, H.; Wang, X.; Peng, H.; Liu, G.; Wei, S.; Lu, Q.; Wang, Y.; Wang, A.; et al. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo. J. Orthop. Transl. 2022, 33, 13–23. [Google Scholar] [CrossRef]
- Augustin, J.; Feichtner, F.; Waselau, A.; Julmi, S.; Klose, C.; Wriggers, P.; Maier, H.; Meyer-Lindenberg, A. Effect of pore size on tissue ingrowth and osteoconductivity in biodegradable Mg alloy scaffolds. J. Appl. Biomater. Funct. Mater. 2022, 20, 22808000221078168. [Google Scholar] [CrossRef]
- Antoniac, I.; Manescu, V.; Paltanea, G.; Antoniac, A.; Nemoianu, I.; Petrescu, M.; Dura, H.; Bodog, A. Additive Manufactured Magnesium-Based Scaffolds for Tissue Engineering. Materials 2022, 15, 8693. [Google Scholar] [CrossRef]
- Feng, P.; Wei, P.; Shuai, C.; Peng, S. Characterization of Mechanical and Biological Properties of 3-D Scaffolds Reinforced with Zinc Oxide for Bone Tissue Engineering. PLoS ONE 2014, 9, e87755. [Google Scholar] [CrossRef] [PubMed]
- Johari, N.; Rafati, F.; Zohari, F.; Tabari, P.; Samadikuchaksaraei, A. Porous functionally graded scaffolds of poly (ε-caprolactone)/ZnO nanocomposite for skin tissue engineering: Morphological, mechanical and biological evaluation. Mater. Chem. Phys. 2022, 280, 125786. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Chen, J.; Geng, X.; Tian, H. 3D Printing of a Porous Zn-1Mg-0.1Sr Alloy Scaffold: A Study on Mechanical Properties, Degradability, and Biosafety. J. Funct. Biomater. 2024, 15, 109. [Google Scholar] [CrossRef] [PubMed]
- Abdulridha, W.a.M.; Almusawi, R.a.M.; Al-Jubouri, O.M.; Wally, Z.J.; Zidan, S.; Haider, J.; Al-Quraine, N.T. Studying the effect of adding Titanium Dioxide (TiO2) nanoparticles on the compressive strength of chemical and heat-activated acrylic denture base resins. Adv. Mater. Process. Technol. 2022, 8, 1058–1070. [Google Scholar] [CrossRef]
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical Applications of TiO2 Nanostructures: Recent Advances. Int. J. Nanomed. 2020, 15, 3447–3470. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, L.; Xiao, Y.; Collins, T.; Akhter, A.; Huang, Y.; Tian, Z.R. Mo-Doped Titanate Nanofibers from Hydrothermal Syntheses for Improving Bone Scaffold. Charact. Appl. Nanomater. 2024, 7, 3587. [Google Scholar] [CrossRef]
- Tian, Y.; Cole, P.; Xiao, Y.; Akhter, A.; Collins, T.; Zhang, L.; Huang, Y.; Tian, Z.R. Hydrothermally doping valve metal Nb into Titanate nanofibers structure for potentially engineering bone tissue. Nano Med. Mater. 2024, 4, 375. [Google Scholar] [CrossRef]
- Will, J.; Gerhardt, L.; Boccaccini, A. Bioactive Glass-Based Scaffolds for Bone Tissue Engineering. In Tissue Engineering III: Cell-Surface Interactions for Tissue Culture; Springer: Berlin/Heidelberg, Germany, 2012; pp. 195–226. [Google Scholar] [CrossRef]
- Heinemann, S.; Heinemann, C.; Jäger, M.; Neunzehn, J.; Wiesmann, H.P.; Hanke, T. Effect of Silica and Hydroxyapatite Mineralization on the Mechanical Properties and the Biocompatibility of Nanocomposite Collagen Scaffolds. ACS Appl. Mater. Interfaces 2011, 3, 4323–4331. [Google Scholar] [CrossRef] [PubMed]
- Putra, N.; Borg, K.; Diaz-Payno, P.; Leeflang, M.; Klimopoulou, M.; Taheri, P.; Mol, J.; Fratila-Apachitei, L.; Huan, Z.; Chang, J.; et al. Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration. Acta Biomater. 2022, 148, 355–373. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Y.; Sun, J.; Jiao, Z. Controllable fabrication of multi-modal porous PLGA scaffolds with different sizes of SPIONs using supercritical CO2 foaming. J. Appl. Polym. Sci. 2022, 139, 52287. [Google Scholar] [CrossRef]
- Zowada, R.; Foudazi, R. Porous Hydrogels Embedded with Hydrated Ferric Oxide Nanoparticles for Arsenate Removal. ACS Appl. Polym. Mater. 2019, 1, 1006–1014. [Google Scholar] [CrossRef]
- Shadman, B.; Asadi, A.; Zahri, S.; Barzegar, A.; Marzban, A. Design of PLGA-based Scaffolds for Developing and Differentiating Mesenchymal Stem Cells (MSCs). Biointerface Res. Appl. Chem. 2021, 11, 12732–12742. [Google Scholar] [CrossRef]
- Lu, L.; Peter, S.; Lyman, M.; Lai, H.; Leite, S.; Tamada, J.; Uyama, S.; Vacanti, J.; Langer, R.; Mikos, A. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 2000, 21, 1837–1845. [Google Scholar] [CrossRef]
- Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014, 15, 3640–3659. [Google Scholar] [CrossRef]
- Maleki, F.; Jafari, H.; Ghaffari-bohlouli, P.; Shahrousvand, M.; Sadeghi, G.; Alimoradi, H.; Shavandi, A. Proliferation and osteogenic differentiation of mesenchymal stem cells on three-dimensional scaffolds made by thermal sintering method. Chem. Pap. 2021, 75, 5971–5981. [Google Scholar] [CrossRef]
- Kundreckaite, P.; Sesok, A.; Stonkus, R.; Gaidulis, G.; Romanczuk-Ruszuk, E.; Pauk, J. Mechanical Properties of 3D Printed PLA Scaffolds for Bone Regeneration. Acta Mech. Autom. 2024, 18, 182–189. [Google Scholar] [CrossRef]
- Liu, Y.; Nelson, T.; Chakroff, J.; Cromeens, B.; Johnson, J.; Lannutti, J.; Besner, G. Comparison of polyglycolic acid, polycaprolactone, and collagen as scaffolds for the production of tissue engineered intestine. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2019, 107, 750–760. [Google Scholar] [CrossRef]
- Todd, E.; Mirsky, N.; Silva, B.; Shinde, A.; Arakelians, A.; Nayak, V.; Marcantonio, R.; Gupta, N.; Witek, L.; Coelho, P. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J. Funct. Biomater. 2024, 15, 280. [Google Scholar] [CrossRef]
- Roosa, S.; Kemppainen, J.; Moffitt, E.; Krebsbach, P.; Hollister, S. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J. Biomed. Mater. Res. Part A 2010, 92, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Mitsak, A.; Kemppainen, J.; Harris, M.; Hollister, S. Effect of Polycaprolactone Scaffold Permeability on Bone Regeneration In Vivo. Tissue Eng. Part A 2011, 17, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, M.; Girase, A.; King, M. Degradation of Poly(ε-caprolactone) Resorbable Multifilament Yarn under Physiological Conditions. Polymers 2023, 15, 381. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; See, C.; Sreenivasamurthy, S.; Zhu, D. Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment. Research 2023, 6, 0239. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Meng, F.; Xu, Z.; Hao, L.; Yao, Y.; Zhu, H.; Wang, C.; Wu, J.; Bian, S.; et al. 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation. Nat. Commun. 2024, 15, 1587. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Ahadian, S.; Fan, Z.; Suthiwanich, K.; Lorestani, F.; Orive, G.; Ostrovidov, S.; Khademhosseini, A. Advances and Future Perspectives in 4D Bioprinting. Biotechnol. J. 2018, 13, e1800148. [Google Scholar] [CrossRef]
- Dong, S.; Maciejewska, B.; Schofield, R.; Hawkins, N.; Siviour, C.; Grobert, N. Electrospinning Nonspinnable Sols to Ceramic Fibers and Springs. ACS Nano 2024, 18, 13538–13550. [Google Scholar] [CrossRef]
- Loh, Q.; Choong, C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part B-Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef]
- Zhu, T.; Cui, Y.; Zhang, M.; Zhao, D.; Liu, G.; Ding, J. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact. Mater. 2020, 5, 584–601. [Google Scholar] [CrossRef]
- Gabetti, S.; Masante, B.; Cochis, A.; Putame, G.; Sanginario, A.; Armando, I.; Fiume, E.; Scalia, A.; Daou, F.; Baino, F.; et al. An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations. Sci. Rep. 2022, 12, 13859. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Tan, X.; Yeong, W.; Tor, S. Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy. Sci. Rep. 2016, 6, 39140. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hou, S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res. Ther. 2022, 13, 135. [Google Scholar] [CrossRef]
- Mitchell, M.; Billingsley, M.; Haley, R.; Wechsler, M.; Peppas, N.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Qu, M.; Jiang, X.; Zhou, X.; Wang, O.; Wu, Q.; Ren, L.; Zhu, J.; Zhu, S.; Tebon, P.; Sun, W.; et al. Stimuli-Responsive Delivery of Growth Factors for Tissue Engineering. Adv. Healthc. Mater. 2020, 9, 1901714. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Huang, X.; Gu, Y.; Li, S.; Yin, P.; Zhang, L.; Tang, P. Skeleton-vasculature chain reaction: A novel insight into the mystery of homeostasis. Bone Res. 2021, 9, 21. [Google Scholar] [CrossRef]
- Hankenson, K.; Dishowitz, M.; Gray, C.; Schenker, M. Angiogenesis in bone regeneration. Inj.-Int. J. Care Inj. 2011, 42, 556–561. [Google Scholar] [CrossRef]
- Ahmad, S.; Hewett, P.; Wang, P.; Al-Ani, B.; Cudmore, M.; Fujisawa, T.; Haigh, J.; le Noble, F.; Wang, L.; Mukhopadhyay, D.; et al. Direct evidence for endothelial vascular endothelial growth factor receptor-1 function in nitric oxide-mediated angiogenesis. Circ. Res. 2006, 99, 715–722. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, W.; Masson, A.; Li, Y. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov. 2024, 10, 71. [Google Scholar] [CrossRef]
- Loh, H.; Norman, B.; Lai, K.; Cheng, W.; Abd Rahman, N.; Alitheen, N.; Osman, M. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 6423. [Google Scholar] [CrossRef]
- Santibanez, J.; Echeverria, C.; Millan, C.; Simon, F. Transforming growth factor-beta superfamily regulates mesenchymal stem cell osteogenic differentiation: A microRNA linking. Acta Histochem. 2023, 125, 152096. [Google Scholar] [CrossRef]
- Ghosh, S.; Webster, T. Mesoporous Silica Based Nanostructures for Bone Tissue Regeneration. Front. Mater. 2021, 8, 692309. [Google Scholar] [CrossRef]
- Balasundaram, G.; Storey, D.; Webster, T. Novel nano-rough polymers for cartilage tissue engineering. Int. J. Nanomed. 2014, 9, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, G.; Li, Y. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016, 4, 16009. [Google Scholar] [CrossRef] [PubMed]
- Canalis, E. Wnt signalling in osteoporosis: Mechanisms and novel therapeutic approaches. Nat. Rev. Endocrinol. 2013, 9, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhou, X.; Mo, M.; Hu, X.; Liu, J.; Chen, L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J. Nanobiotechnol. 2024, 22, 185. [Google Scholar] [CrossRef]
- Tanaka, M.; Izumiya, M.; Haniu, H.; Ueda, K.; Ma, C.; Ueshiba, K.; Ideta, H.; Sobajima, A.; Uchiyama, S.; Takahashi, J.; et al. Current Methods in the Study of Nanomaterials for Bone Regeneration. Nanomaterials 2022, 12, 1195. [Google Scholar] [CrossRef]
- Qiao, K.; Xu, L.; Tang, J.; Wang, Q.; Lim, K.; Hooper, G.; Woodfield, T.; Liu, G.; Tian, K.; Zhang, W.; et al. The advances in nanomedicine for bone and cartilage repair. J. Nanobiotechnol. 2022, 20, 141. [Google Scholar] [CrossRef]
- Mora-Raimundo, P.; Lozano, D.; Benito, M.; Mulero, F.; Manzano, M.; Vallet-Regí, M. Osteoporosis Remission and New Bone Formation with Mesoporous Silica Nanoparticles. Adv. Sci. 2021, 8, 2101107. [Google Scholar] [CrossRef]
- Battafarano, G.; Rossi, M.; De Martino, V.; Marampon, F.; Borro, L.; Secinaro, A.; Del Fattore, A. Strategies for Bone Regeneration: From Graft to Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 1128. [Google Scholar] [CrossRef]
- Habraken, W.; Habibovic, P.; Epple, M.; Bohner, M. Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016, 19, 69–87. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, J.; Shim, J.; Hwang, N.; Heo, C. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Aliramaji, S.; Zamanian, A.; Mozafari, M. Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 70, 736–744. [Google Scholar] [CrossRef]
- Abdelmoaty, A.; Mousa, S. Synthesis and characterization of hydroxyapatite nanoparticles from calcium hydroxide fouled with gases evolved from smokestack of glass industry. Sci. Rep. 2024, 14, 10969. [Google Scholar] [CrossRef]
- Farjaminejad, S.; Farjaminejad, R.; Garcia-Godoy, F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J. Funct. Biomater. 2024, 15, 241. [Google Scholar] [CrossRef]
- Liang, W.; Ding, P.; Li, G.; Lu, E.; Zhao, Z. Hydroxyapatite Nanoparticles Facilitate Osteoblast Differentiation and Bone Formation Within Sagittal Suture During Expansion in Rats. Drug Des. Dev. Ther. 2021, 15, 905–917. [Google Scholar] [CrossRef]
- Burdusel, A.; Gherasim, O.; Andronescu, E.; Grumezescu, A.; Ficai, A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022, 14, 770. [Google Scholar] [CrossRef]
- Malekpour, B.; Ajami, S.; Salehi, P.; Hamedani, S. Use of nano-hydroxyapatite serum and different finishing/polishing techniques to reduce enamel staining of debonding after orthodontic treatment A randomized clinical trial. J. Orofac. Orthop.-Fortschritte Der Kieferorthopadie 2022, 83, 205–214. [Google Scholar] [CrossRef]
- Andronescu, E.; Grumezescu, A.; Gusa, M.; Holban, A.; Ilie, F.; Irimia, A.; Nicoara, I.; Tone, M. Nano-Hydroxyapatite: Novel Approaches in Biomedical Applications; William Andrew Inc.: Norwich, NY, USA, 2016; Volume 4, pp. 189–213. [Google Scholar]
- Murahashi, Y.; Yano, F.; Nakamoto, H.; Maenohara, Y.; Iba, K.; Yamashita, T.; Tanaka, S.; Ishihara, K.; Okamura, Y.; Moro, T.; et al. Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomater. 2019, 85, 172–179. [Google Scholar] [CrossRef]
- Chen, S.; Shi, Y.; Zhang, X.; Ma, J. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 112, 110893. [Google Scholar] [CrossRef]
- Salim, S.; Loutfy, S.; El-Fakharany, E.; Taha, T.; Hussien, Y.; Kamoun, E. Influence of chitosan and hydroxyapatite incorporation on properties of electrospun PVA/HA nanofibrous mats for bone tissue regeneration: Nanofibers optimization and in-vitro assessment. J. Drug Deliv. Sci. Technol. 2021, 62, 102417. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, M.; Xu, D. Nucleation of Biomimetic Hydroxyapatite Nanoparticles on the Surface of Type I Collagen: Molecular Dynamics Investigations. J. Phys. Chem. C 2019, 123, 2533–2543. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, A.; Jiang, S.; Liaqat, U.; Lin, K.; Sun, W.; Yuan, C. Promoting vascularized bone regeneration via strontium-incorporated hydroxyapatite bioceramic. Mater. Des. 2023, 234, 112313. [Google Scholar] [CrossRef]
- Xu, D.; Wan, Y.; Li, Z.; Wang, C.; Zou, Q.; Du, C.; Wang, Y. Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells. Biomater. Sci. 2020, 8, 3286–3300. [Google Scholar] [CrossRef] [PubMed]
- Horch, H.; Sader, R.; Pautke, C.; Neff, A.; Deppe, H.; Kolk, A. Synthetic, pure-phase betatricalcium phosphate granules (Cerasorb®) regeneration in the ceramic for bone reconstructive surgery of the jaws. Int. J. Oral Maxillofac. Surg. 2006, 35, 708–713. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, Y.; Meng, X.; Zheng, Z.; Li, L.; Ke, L.; Li, L.; Huang, C.; Zhu, G.; Pan, H.; et al. PLGA/β-TCP composite scaffold incorporating cucurbitacin B promotes bone regeneration by inducing angiogenesis. J. Orthop. Transl. 2021, 31, 41–51. [Google Scholar] [CrossRef]
- Jiao, X.; Sun, X.; Li, W.; Chu, W.; Zhang, Y.; Li, Y.; Wang, Z.; Zhou, X.; Ma, J.; Xu, C.; et al. 3D-Printed ?-Tricalcium Phosphate Scaffolds Promote Osteogenic Differentiation of Bone Marrow-Deprived Mesenchymal Stem Cells in an N6-methyladenosine- Dependent Manner. Int. J. Bioprinting 2022, 8, 31–44. [Google Scholar] [CrossRef]
- Zhou, H.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011, 7, 2769–2781. [Google Scholar] [CrossRef]
- Hesaraki, S.; Saba, G.; Shahrezaee, M.; Nezafati, N.; Orshesh, Z.; Roshanfar, F.; Borhan, S.; Glasmacher, B.; Makvandi, P.; Xu, Y. Reinforcing β-tricalcium phosphate scaffolds for potential applications in bone tissue engineering: Impact of functionalized multi-walled carbon nanotubes. Sci. Rep. 2024, 14, 19055. [Google Scholar] [CrossRef]
- Bose, S.; Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 2012, 8, 1401–1421. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Botelho, M.; Dorozhkin, S. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 71, 1293–1312. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Kawazoe, N.; Chen, G. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticlesicollagen porous composite scaffolds for bone tissue engineering. Acta Biomater. 2018, 67, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Turgut, H.; Tian, Z.; Yu, F.; Zhou, W. Multivalent Cation Cross-Linking Suppresses Highly Energetic Graphene Oxide’s Flammability. J. Phys. Chem. C 2017, 121, 5829–5835. [Google Scholar] [CrossRef]
- Yoon, Y.; Kye, H.; Yang, W.; Kang, J. Comparing Graphene Oxide and Reduced Graphene Oxide as Blending Materials for Polysulfone and Polyvinylidene Difluoride Membranes. Appl. Sci. 2020, 10, 2015. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, J.; Wu, B.; Liu, Z.; Li, M.; Wang, X.; Tang, P.; Wang, Z. Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Front. Bioeng. Biotechnol. 2021, 9, 734688. [Google Scholar] [CrossRef]
- Elkhenany, H.; Amelse, L.; Lafont, A.; Bourdo, S.; Caldwell, M.; Neilsen, N.; Dervishi, E.; Derek, O.; Biris, A.; Anderson, D.; et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: Potential for bone tissue engineering. J. Appl. Toxicol. 2015, 35, 367–374. [Google Scholar] [CrossRef]
- Anderson, M.; Dhert, W.; de Bruijn, J.; Dalmeijer, R.; Leenders, H.; van Blitterswijk, C.; Verbout, A. Critical size defect in the goat’s os ilium—A model to evaluate bone grafts and substitutes. Clin. Orthop. Relat. Res. 1999, 364, 231–239. [Google Scholar] [CrossRef]
- Nair, M.; Nancy, D.; Krishnan, A.; Anjusree, G.; Vadukumpully, S.; Nair, S. Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology 2015, 26, 161001. [Google Scholar] [CrossRef]
- Liu, S.; Mou, S.; Zhou, C.; Guo, L.; Zhong, A.; Yang, J.; Yuan, Q.; Wang, J.; Sun, J.; Wang, Z. Off-the-Shelf Biomimetic Graphene Oxide-Collagen Hybrid Scaffolds Wrapped with Osteoinductive Extracellular Matrix for the Repair of Cranial Defects in Rats. ACS Appl. Mater. Interfaces 2018, 10, 42948–42958. [Google Scholar] [CrossRef]
- Liu, X.; Miller, A.; Park, S.; George, M.; Waletzki, B.; Xu, H.; Terzic, A.; Lu, L. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS Appl. Mater. Interfaces 2019, 11, 23558–23572. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, S.; Moghaddam, E.; Basirun, W.; Mehrali, M.; Sookhakian, M.; Hamdi, M.; Moghaddam, M.; Alias, Y. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 2014, 69, 32–45. [Google Scholar] [CrossRef]
- Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H. Reduced graphene oxide (RGO) reinforced Mg biocomposites for use as orthopedic applications: Mechanical properties, cytocompatibility and antibacterial activity. J. Magnes. Alloys 2022, 10, 3612–3627. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Sun, W.; Zhang, H. Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J. 2011, 5, 40. [Google Scholar] [CrossRef]
- Bellet, P.; Gasparotto, M.; Pressi, S.; Fortunato, A.; Scapin, G.; Mba, M.; Menna, E.; Filippini, F. Graphene-Based Scaffolds for Regenerative Medicine. Nanomaterials 2021, 11, 404. [Google Scholar] [CrossRef]
- Siqueira, P.; Souza, J.; Estevao, B.; Altei, W.; Carmo, T.; Santos, F.; Araújo, H.; Zucolotto, V.; Fernandes, M. Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line. Aquat. Toxicol. 2022, 248, 106199. [Google Scholar] [CrossRef]
- Saberi, A.; Baltatu, M.; Vizureanu, P. Recent Advances in Magnesium-Magnesium Oxide Nanoparticle Composites for Biomedical Applications. Bioengineering 2024, 11, 508. [Google Scholar] [CrossRef]
- Malaiappan, S.; Harris, J. Osteogenic Potential of Magnesium Oxide Nanoparticles in Bone Regeneration: A Systematic Review. Cureus J. Med. Sci. 2024, 16, e55502. [Google Scholar] [CrossRef]
- Coelho, C.; Padrao, T.; Costa, L.; Pinto, M.; Costa, P.; Domingues, V.; Quadros, P.; Monteiro, F.; Sousa, S. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci. Rep. 2020, 10, 19098. [Google Scholar] [CrossRef]
- Lamb, G.; Stephenson, D. Effect of Mg2+ on The Control of Ca2+ Release in Skeletal-Muscle Fibers of the Toad. J. Physiol. 1991, 434, 507–528. [Google Scholar] [CrossRef]
- Nunes, A.; Minetti, C.; Remeta, D.; Baum, J. Magnesium Activates Microsecond Dynamics to Regulate Integrin-Collagen Recognition. Structure 2018, 26, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wang, L.; Xu, J.; Zou, J. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov. 2023, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhao, S.; Li, Y.; Xu, J.; Yan, W.; Guo, B.; Xu, J.; Jiang, L.; Zhang, Y.; Wei, H.; et al. Engineered MgO nanoparticles for cartilage-bone synergistic therapy. Sci. Adv. 2024, 10, eadk6084. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hernández, A.; Vega-Jiménez, A.; Vázquez-Olmos, A.; Ortega-Maldonado, M.; Ximenez-Fyvie, L. Antibacterial Properties In Vitro of Magnesium Oxide Nanoparticles for Dental Applications. Nanomaterials 2023, 13, 502. [Google Scholar] [CrossRef]
- Liu, J.; Yang, S.; Tan, Y.; Liu, X.; Tian, Y.; Liang, L.; Wu, H. Simultaneously stimulated osteogenesis and anti-bacteria of physically cross-linked double-network hydrogel loaded with MgO-Ag2O nanocomposites. Biomater. Adv. 2022, 141, 213123. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Saberi, A.; Heydari, Z. The effect of Co-encapsulated GNPs-CNTs nanofillers on mechanical properties, degradation and antibacterial behavior of Mg-based composite. J. Mech. Behav. Biomed. Mater. 2023, 138, 105601. [Google Scholar] [CrossRef]
- Kamanina, N. Carbon Nanotube Coatings’ Role in Transparency, Mechanical Hardness, and Wetting Angle Increase. Coatings 2022, 12, 1279. [Google Scholar] [CrossRef]
- Khalajabadi, S.; Kadir, M.; Izman, S.; Ebrahimi-Kahrizsangi, R. Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications. Mater. Des. 2015, 88, 1223–1233. [Google Scholar] [CrossRef]
- Tang, C.; Lyu, S.; Zhao, Z.; Chen, M. Effects of MgO nano particles on the mechanical properties and corrosion behavior of Mg-Zn-Ca alloy. Mater. Chem. Phys. 2023, 297, 127380. [Google Scholar] [CrossRef]
- Amaravathy, P.; Sathyanarayanan, S.; Sowndarya, S.; Rajendran, N. Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications. Ceram. Int. 2014, 40, 6617–6630. [Google Scholar] [CrossRef]
- Andonegi, M.; Peñalba, M.; de la Caba, K.; Guerrero, P. ZnO nanoparticle-incorporated native collagen films with electro-conductive properties. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 108, 110394. [Google Scholar] [CrossRef] [PubMed]
- Nekounam, H.; Samani, S.; Samadian, H.; Shokrgozar, M.; Faridi-Majidi, R. Zinc oxide-carbon nanofiber (ZnO-CNF) nanocomposite for bone tissue engineering: An inquiry into structural, physical and biological properties. Mater. Chem. Phys. 2023, 295, 127052. [Google Scholar] [CrossRef]
- Yu, J.; Xu, L.; Li, K.; Xie, N.; Xi, Y.; Wang, Y.; Zheng, X.; Chen, X.; Wang, M.; Ye, X. Zinc-modified Calcium Silicate Coatings Promote Osteogenic Differentiation through TGF-β/Smad Pathway and Osseointegration in Osteopenic Rabbits. Sci. Rep. 2017, 7, 3440. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Dou, X.; Du, M.; Min, S.; Zhu, B.; Liu, X. Osteogenesis or Apoptosis-Twofold Effects of Zn2+ on Bone Marrow Mesenchymal Stem Cells: An In Vitro and In Vivo Study. ACS Omega 2024, 9, 10945–10957. [Google Scholar] [CrossRef]
- Zhang, R.; Oyajobi, B.; Harris, S.; Chen, D.; Tsao, C.; Deng, H.; Zhao, M. Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 2013, 52, 145–156. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Weitzmann, M. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol. Cell. Biochem. 2011, 355, 179–186. [Google Scholar] [CrossRef]
- Wei, P.; Wang, N.; Zhang, Q.; Wang, W.; Sun, H.; Liu, Z.; Yan, T.; Wang, Q.; Qiu, L. Nano-ZnO-modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair. Regen. Biomater. 2024, 11, rbae051. [Google Scholar] [CrossRef]
- Dornelas, J.; Dornelas, G.; Rossi, A.; Piattelli, A.; Di Pietro, N.; Romasco, T.; Mourao, C.; Alves, G. The Incorporation of Zinc into Hydroxyapatite and Its Influence on the Cellular Response to Biomaterials: A Systematic Review. J. Funct. Biomater. 2024, 15, 178. [Google Scholar] [CrossRef]
- Król, A.; Pomastowski, P.; Rafinska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Qing, Y.; Li, R.; Tang, X.; Guo, D.; Qin, Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int. J. Nanomed. 2020, 15, 6247–6262. [Google Scholar] [CrossRef]
- Agarwal, H.; Menon, S.; Kumar, S.; Rajeshkumar, S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem.-Biol. Interact. 2018, 286, 60–70. [Google Scholar] [CrossRef]
- Ye, X.; Tian, Y.; Gao, M.; Cheng, F.; Lan, J.; Chen, H.; Lanoue, M.; Huang, S.; Tian, Z. Efficient Photocatalytic Core-Shell Synthesis of Titanate Nanowire/rGO. Catalysts 2024, 14, 218. [Google Scholar] [CrossRef]
- Tan, A.; Pingguan-Murphy, B.; Ahmad, R.; Akbar, S. Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: A review. J. Mater. Sci. 2013, 48, 8337–8353. [Google Scholar] [CrossRef]
- Park, J.; Bauer, S.; von der Mark, K.; Schmuki, P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007, 7, 1686–1691. [Google Scholar] [CrossRef] [PubMed]
- De Souza, W.; Piperni, S.; Grenho, L.; Rocha, L.; Granjeiro, J.; Melo, S.; Fernandes, M.; Ribeiro, A. Titanium dioxide nanoparticles affect osteoblast-derived exosome cargos and impair osteogenic differentiation of human mesenchymal stem cells. Biomater. Sci. 2023, 11, 2427–2444. [Google Scholar] [CrossRef]
- Brammer, K.; Oh, S.; Cobb, C.; Bjursten, L.; van der Heyde, H.; Jin, S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009, 5, 3215–3223. [Google Scholar] [CrossRef]
- St Pierre, C.; Chan, M.; Iwakura, Y.; Ayers, D.; Kurt-Jones, E.; Finberg, R. Periprosthetic Osteolysis: Characterizing the Innate Immune Response to Titanium Wear-Particles. J. Orthop. Res. 2011, 29, 1418–1424. [Google Scholar] [CrossRef]
- Hou, Y.; Cai, K.; Li, J.; Chen, X.; Lai, M.; Hu, Y.; Luo, Z.; Ding, X.; Xu, D. Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int. J. Nanomed. 2013, 8, 3619–3630. [Google Scholar] [CrossRef]
- Ahirwar, H.; Zhou, Y.; Mahapatra, C.; Ramakrishna, S.; Kumar, P.; Nanda, H. Materials for Orthopedic Bioimplants: Modulating Degradation and Surface Modification Using Integrated Nanomaterials. Coatings 2020, 10, 264. [Google Scholar] [CrossRef]
- Wang, R.; Ruan, C.; Kanayeva, D.; Lassiter, K.; Li, Y. TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Lett. 2008, 8, 2625–2631. [Google Scholar] [CrossRef]
- Tian, Z.; Voigt, J.; Liu, J.; McKenzie, B.; Xu, H. Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. 2003, 125, 12384–12385. [Google Scholar] [CrossRef]
- Augustine, A.; Augustine, R.; Hasan, A.; Raghuveeran, V.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride-trifluoroethylene) scaffolds for bone tissue engineering applications. J. Mater. Sci.-Mater. Med. 2019, 30, 96. [Google Scholar] [CrossRef]
- Gulati, K.; Aw, M.; Losic, D. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection. Nanoscale Res. Lett. 2011, 6, 571. [Google Scholar] [CrossRef]
- Perez, R.; Singh, R.; Kim, T.; Kim, H. Silica-based multifunctional nanodelivery systems toward regenerative medicine. Mater. Horiz. 2017, 4, 772–799. [Google Scholar] [CrossRef]
- Dragonas, P.; Katsaros, T.; Avila-Ortiz, G.; Chambrone, L.; Schiavo, J.; Palaiologou, A. Effects of leukocyte-platelet-rich fibrin (L-PRF) in different intraoral bone grafting procedures: A systematic review. Int. J. Oral Maxillofac. Surg. 2019, 48, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Gasqueres, G.; Bonhomme, C.; Maquet, J.; Babonneau, F.; Hayakawa, S.; Kanaya, T.; Osaka, A. Revisiting silicate substituted hydroxyapatite by solid-state NMR. Magn. Reson. Chem. 2008, 46, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Fritsch-Decker, S.; Marquardt, C.; Stoeger, T.; Diabaté, S.; Weiss, C. Revisiting the stress paradigm for silica nanoparticles: Decoupling of the anti-oxidative defense, pro-inflammatory response and cytotoxicity. Arch. Toxicol. 2018, 92, 2163–2174. [Google Scholar] [CrossRef] [PubMed]
- Echazú, M.; Renou, S.; Alvarez, G.; Desimone, M.; Olmedo, D. Synthesis and Evaluation of a Chitosan-Silica-Based Bone Substitute for Tissue Engineering. Int. J. Mol. Sci. 2022, 23, 13379. [Google Scholar] [CrossRef]
- Shuai, C.; Yang, F.; Shuai, Y.; Peng, S.; Chen, S.; Deng, Y.; Feng, P. Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(L-lactic acid) scaffold. J. Adv. Res. 2023, 48, 175–190. [Google Scholar] [CrossRef]
- Li, C.; Jiang, C.; Deng, Y.; Li, T.; Li, N.; Peng, M.; Wang, J. RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties. Sci. Rep. 2017, 7, srep41331. [Google Scholar] [CrossRef]
- Mahapatra, C.; Singh, R.; Kim, J.; Patel, K.; Perez, R.; Jang, J.; Kim, H. Osteopromoting Reservoir of Stem Cells: Bioactive Mesoporous Nanocarrier/Collagen Gel through Slow-Releasing FGF18 and the Activated BMP Signaling. ACS Appl. Mater. Interfaces 2016, 8, 27573–27584. [Google Scholar] [CrossRef]
- Singh, R.; Jin, G.; Mahapatra, C.; Patel, K.; Chrzanowski, W.; Kim, H. Mesoporous Silica-Layered Biopolymer Hybrid Nanofibrous Scaffold: A Novel Nanobiomatrix Platform for Therapeutics Delivery and Bone Regeneration. ACS Appl. Mater. Interfaces 2015, 7, 8088–8098. [Google Scholar] [CrossRef]
- Miller, M.; Gadde, S.; Pfirschke, C.; Engblom, C.; Sprachman, M.; Kohler, R.; Yang, K.; Laughney, A.; Wojtkiewicz, G.; Kamaly, N.; et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med. 2015, 7, 314ra183. [Google Scholar] [CrossRef]
- Dasari, A.; Xue, J.; Deb, S. Magnetic Nanoparticles in Bone Tissue Engineering. Nanomaterials 2022, 12, 757. [Google Scholar] [CrossRef] [PubMed]
- Eivazzadeh-Keihan, R.; Noruzi, E.; Chenab, K.; Jafari, A.; Radinekiyan, F.; Hashemi, S.; Ahmadpour, F.; Behboudi, A.; Mosafer, J.; Mokhtarzadeh, A.; et al. Metal-based nanoparticles for bone tissue engineering. J. Tissue Eng. Regen. Med. 2020, 14, 1687–1714. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sun, J.; Zhao, L.; Zhang, F.; Liang, X.; Guo, Y.; Weir, M.; Reynolds, M.; Gu, N.; Xu, H. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018, 183, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Singh, R.; Seo, S.; Kim, T.; Kim, J.; Lee, E.; Kim, H. Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: Physicochemical, mechanical, and biological properties effective for bone regeneration. RSC Adv. 2014, 4, 17325–17336. [Google Scholar] [CrossRef]
- Singh, R.; Patel, K.; Lee, J.; Lee, E.; Kim, J.; Kim, T.; Kim, H. Potential of Magnetic Nanofiber Scaffolds with Mechanical and Biological Properties Applicable for Bone Regeneration. PLoS ONE 2014, 9, e91584. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Wang, Z.; Zhou, Y.; Lou, Z.; Chen, B.; Wang, P.; Guo, Z.; Tang, H.; Ma, J.; et al. Magnetic Cell-Scaffold Interface Constructed by Superparamagnetic IONP Enhanced Osteogenesis of Adipose-Derived Stem Cells. ACS Appl. Mater. Interfaces 2018, 10, 44279–44289. [Google Scholar] [CrossRef]
- Shuai, C.; Yang, W.; He, C.; Peng, S.; Gao, C.; Yang, Y.; Qi, F.; Feng, P. A magnetic micro-environment in scaffolds for stimulating bone regeneration. Mater. Des. 2020, 185, 108275. [Google Scholar] [CrossRef]
- De Santis, R.; Russo, A.; Gloria, A.; D’Amora, U.; Russo, T.; Panseri, S.; Sandri, M.; Tampieri, A.; Marcacci, M.; Dediu, V.; et al. Towards the Design of 3D Fiber-Deposited Poly(ε-caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration. J. Biomed. Nanotechnol. 2015, 11, 1236–1246. [Google Scholar] [CrossRef]
- Hu, S.; Zhou, Y.; Zhao, Y.; Xu, Y.; Zhang, F.; Gu, N.; Ma, J.; Reynolds, M.; Xia, Y.; Xu, H. Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats. J. Tissue Eng. Regen. Med. 2018, 12, E2085–E2098. [Google Scholar] [CrossRef]
- Hao, S.; Meng, J.; Zhang, Y.; Liu, J.; Nie, X.; Wu, F.; Yang, Y.; Wang, C.; Gu, N.; Xu, H. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials 2017, 140, 16–25. [Google Scholar] [CrossRef]
- Henning, T.; Gawande, R.; Khurana, A.; Tavri, S.; Mandrussow, L.; Golovko, D.; Horvai, A.; Sennino, B.; McDonald, D.; Meier, R.; et al. Magnetic Resonance Imaging of Ferumoxide-Labeled Mesenchymal Stem Cells in Cartilage Defects: In Vitro and In Vivo Investigations. Mol. Imaging 2012, 11, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Yarjanli, Z.; Ghaedi, K.; Esmaeili, A.; Rahgozar, S.; Zarrabi, A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci. 2017, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Born, G.; Chaaban, M.; Scherberich, A. Natural Polymeric Scaffolds in Bone Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 474. [Google Scholar] [CrossRef] [PubMed]
- Socci, M.; Rodríguez, G.; Oliva, E.; Fushimi, S.; Takabatake, K.; Nagatsuka, H.; Felice, C.; Rodríguez, A. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering 2023, 10, 218. [Google Scholar] [CrossRef]
- Sabir, M.; Xu, X.; Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 2009, 44, 5713–5724. [Google Scholar] [CrossRef]
- Jafari, M.; Paknejad, Z.; Rad, M.; Motamedian, S.; Eghbal, M.; Nadjmi, N.; Khojasteh, A. Polymeric scaffolds in tissue engineering: A literature review. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2017, 105, 431–459. [Google Scholar] [CrossRef]
- Donnaloja, F.; Jacchetti, E.; Soncini, M.; Raimondi, M. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers 2020, 12, 905. [Google Scholar] [CrossRef]
- Bonani, W.; Singhatanadgige, W.; Pornanong, A.; Motta, A. Natural Origin Materials for Osteochondral Tissue Engineering. Osteochondral Tissue Eng. Nanotechnol. Scaffolding-Relat. Dev. Transl. 2018, 1058, 3–30. [Google Scholar] [CrossRef]
- Atala, A.; Kasper, F.; Mikos, A. Engineering Complex Tissues. Sci. Transl. Med. 2012, 4, 160rv12. [Google Scholar] [CrossRef]
- Wang, S.; Lu, L.; Wang, C.; Gao, C.; Wang, X. Polymeric Biomaterials for Tissue Engineering Applications 2011. Int. J. Polym. Sci. 2011, 2011, 184623. [Google Scholar] [CrossRef]
- Barlian, A.; Vanya, K. Nanotopography in directing osteogenic differentiation of mesenchymal stem cells: Potency and future perspective. Future Sci. OA 2022, 8, FSO765. [Google Scholar] [CrossRef] [PubMed]
- Dobbenga, S.; Fratila-Apachitei, L.; Zadpoor, A. Nanopattern-induced osteogenic differentiation of stem cells—A systematic review. Acta Biomater. 2016, 46, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.; Gottschalk, M.; Fokin, N.; Büker, B.; Kaltschmidt, B.; Dreyer, A.; Vordemvenne, T.; Kaltschmidt, C.; Hütten, A.; Kaltschmidt, B. Natural and synthetic nanopores directing osteogenic differentiation of human stem cells. Nanomed.-Nanotechnol. Biol. Med. 2019, 17, 319–328. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, Y.; Liu, W.; Huang, X.; Zhang, B.; Zheng, Z.; Wei, X.; Xu, J.; Zhao, Z. Surface Epitaxial Nano-Topography Facilitates Biomineralization to Promote Osteogenic Differentiation and Osteogenesis. ACS Omega 2021, 6, 21792–21800. [Google Scholar] [CrossRef]
- Ortega-Oller, I.; Padial-Molina, M.; Galindo-Moreno, P.; O’Valle, F.; Jódar-Reyes, A.; Peula-García, J. Bone Regeneration from PLGA Micro-Nanoparticles. Biomed Res. Int. 2015, 2015, 415289. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, B.; Xia, G.; Choi, S. FDA’s Poly (Lactic-Co-Glycolic Acid) Research Program and Regulatory Outcomes. AAPS J. 2021, 23, 92. [Google Scholar] [CrossRef]
- Semete, B.; Booysen, L.; Lemmer, Y.; Kalombo, L.; Katata, L.; Verschoor, J.; Swai, H. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed.-Nanotechnol. Biol. Med. 2010, 6, 662–671. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.; Yadav, S. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B-Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, T.; Li, J.; Cui, L.; Zhang, Z.; Zhuang, X.; Ding, J. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact. Mater. 2021, 6, 346–360. [Google Scholar] [CrossRef]
- Hassan, M.; Abdelnabi, H.; Mohsin, S. Harnessing the Potential of PLGA Nanoparticles for Enhanced Bone Regeneration. Pharmaceutics 2024, 16, 273. [Google Scholar] [CrossRef]
- Astete, C.; Sabliov, C. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci.-Polym. Ed. 2006, 17, 247–289. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ding, J. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2004, 25, 5821–5830. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Pan, Z.; Cao, L.; Gao, J.; Yao, H.; Liu, X.; Guo, R.; Liang, X.; Dong, J.; Ding, J. Restoration of osteochondral defects by implanting bilayered poly(lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J. Orthop. Transl. 2019, 19, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Shen, T.; Ma, L.; Wang, D.; Gao, C. Regeneration of osteochondral defects in vivo by a cell-free cylindrical poly(lactide-co-glycolide) scaffold with a radially oriented microstructure. J. Tissue Eng. Regen. Med. 2018, 12, E1647–E1661. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Z.; Xia, L.; Liu, X.; Guo, X.; He, Y.; Zhou, J.; Qu, Z.; Mei, G.; Jin, D.; et al. Bilayered Poly(lactide-co-glycolide) Scaffold with Platelet-Rich Plasma and Mesenchymal Stem Cells Improves Restoration of Osteochondral Defects. J. Biomater. Tissue Eng. 2015, 5, 757–765. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Kong, S.; Chiang, M.; Ho, M.; Yeh, M.; Chen, C. Low power laser irradiation and human adipose-derived stem cell treatments promote bone regeneration in critical-sized calvarial defects in rats. PLoS ONE 2018, 13, e0195337. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, C.; Huo, H.; Ji, C.; Sun, M.; Nie, L. Injectable temperature-sensitive hydrogel with VEGF loaded microspheres for vascularization and bone regeneration of femoral head necrosis. Mater. Lett. 2018, 229, 138–141. [Google Scholar] [CrossRef]
- Fiedler, T.; Belova, I.; Murch, G.; Roether, J.; Boccaccini, A. Tailoring elastic properties of PLGA/TiO2 biomaterials. Comput. Mater. Sci. 2012, 61, 283–286. [Google Scholar] [CrossRef]
- Park, J.; Hwang, J.; Back, J.; Jang, S.; Kim, H.; Kim, P.; Shin, S.; Kim, T. High strength PLGA/Hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants. Compos. Part B-Eng. 2019, 178, 107449. [Google Scholar] [CrossRef]
- Dong, W.; Huang, X.; Sun, Y.; Zhao, S.; Yin, J.; Chen, L. Mechanical characteristics and in vitro degradation kinetics analysis of polylactic glycolic acid/β-tricalcium phosphate (PLGA/β-TCP) biocomposite interference screw. Polym. Degrad. Stab. 2021, 186, 109421. [Google Scholar] [CrossRef]
- Magri, A.; Fernandes, K.; Assis, L.; Kido, H.; Avanzi, I.; Medeiros, M.; Granito, R.; Braga, F.; Rennó, A. Incorporation of collagen and PLGA in bioactive glass: In vivo biological evaluation. Int. J. Biol. Macromol. 2019, 134, 869–881. [Google Scholar] [CrossRef]
- Sarkar, N.; Bose, S. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds. Acta Biomater. 2020, 114, 407–420. [Google Scholar] [CrossRef]
- Wojak-Cwik, I.; Rumian, L.; Krok-Borkowicz, M.; Hess, R.; Bernhardt, R.; Dobrzynski, P.; Möller, S.; Schnabelrauch, M.; Hintze, V.; Scharnweber, D.; et al. Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 97, 12–22. [Google Scholar] [CrossRef]
- Alavi, M.; Memarpour, S.; Pazhohan-Nezhad, H.; Asl, A.; Moghbeli, M.; Shadmanfar, S.; Saburi, E. Applications of poly(lactic acid) in bone tissue engineering: A review article. Artif. Organs 2023, 47, 1423–1430. [Google Scholar] [CrossRef]
- Liu, S.; Qin, S.; He, M.; Zhou, D.; Qin, Q.; Wang, H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos. Part B-Eng. 2020, 199, 108238. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef]
- Grémare, A.; Guduric, V.; Bareille, R.; Heroguez, V.; Latour, S.; L’heureux, N.; Fricain, J.; Catros, S.; Le Nihouannen, D. Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part A 2018, 106, 887–894. [Google Scholar] [CrossRef]
- Bergsma, J.; Debruijn, W.; Rozema, F.; Bos, R.; Boering, G. Late Degradation Tissue-Response to Poly(L-Lactide) Bone Plates and Screws. Biomaterials 1995, 16, 25–31. [Google Scholar] [CrossRef]
- MainilVarlet, P.; Curtis, R.; Gogolewski, S. Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides. J. Biomed. Mater. Res. 1997, 36, 360–380. [Google Scholar] [CrossRef]
- Gritsch, L.; Conoscenti, G.; La Carrubba, V.; Nooeaid, P.; Boccaccini, A. Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 94, 1083–1101. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Rodríguez, S.; González-Torres, M.; Ribas-Aparicio, R.; Del Prado-Audelo, M.; Leyva-Gómez, G.; Gürer, E.; Sharifi-Rad, J. Recent advances in modified poly (lactic acid) as tissue engineering materials. J. Biol. Eng. 2023, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Saini, P.; Arora, M.; Kumar, M. Poly(lactic acid) blends in biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.; da Silva, B.; Hamouda, A.; de Toledo, M.; Schalla, C.; Rütten, S.; Goetzke, R.; Mattoso, L.; Zenke, M.; Sechi, A. PLA/Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli. Sci. Rep. 2022, 12, 2333. [Google Scholar] [CrossRef]
- Flores-Sánchez, M.; Islas-Arteaga, N.; Raya-Rivera, A.; Esquiliano-Rendon, D.; Morales-Corona, J.; Uribe-Juarez, O.; Vivar-Velázquez, F.; Ortiz-Vázquez, G.; Olayo, R. Effect of a plasma synthesized polypyrrole coverage on polylactic acid/hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part A 2021, 109, 2199–2211. [Google Scholar] [CrossRef]
- Wang, B.; Ye, X.; Chen, G.; Zhang, Y.; Zeng, Z.; Liu, C.; Tan, Z.; Jie, X. Fabrication and properties of PLA/β-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering. Front. Bioeng. Biotechnol. 2024, 12, 1273541. [Google Scholar] [CrossRef]
- Lee, H.; Shin, D.; Na, Y.; Han, G.; Kim, J.; Kim, N.; Bang, S.; Kang, H.; Oh, S.; Yoon, C.; et al. Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants. Biomater. Adv. 2023, 152, 213523. [Google Scholar] [CrossRef]
- Nayak, J.; Behera, L.; Jali, B. TiO2 strengthened PLA nanocomposites: A prospective material for packaging application. J. Mol. Struct. 2024, 1316, 138892. [Google Scholar] [CrossRef]
- Hashemi, S.; Mehrabi, M.; Ehterami, A.; Gharravi, A.; Bitaraf, F.; Salehi, M. In-vitro and in-vivo studies of PLA/PCL/gelatin composite scaffold containing ascorbic acid for bone regeneration. J. Drug Deliv. Sci. Technol. 2021, 61, 102077. [Google Scholar] [CrossRef]
- Rosa, J.; Bonvent, J.; Santos, A. Poly (ε-caprolactone)/Poly (lactic acid) fibers produced by rotary jet spinning for skin dressing with antimicrobial activity. J. Biomater. Appl. 2022, 36, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Petinakis, E.; Dean, K.; Liu, H.; Yuan, Q. Enhancing Compatibilizer Function by Controlled Distribution in Hydrophobic Polylactic Acid/Hydrophilic Starch Blends. J. Appl. Polym. Sci. 2011, 119, 2189–2195. [Google Scholar] [CrossRef]
- Cao, H.; Kuboyama, N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 2010, 46, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Ng, F.; Nicoulin, V.; Peloso, C.; Curia, S.; Richard, J.; Lopez-Noriega, A. In Vitro and In Vivo Hydrolytic Degradation Behaviors of a Drug-Delivery System Based on the Blend of PEG and PLA Copolymers. ACS Appl. Mater. Interfaces 2023, 15, 55495–55509. [Google Scholar] [CrossRef]
- Kim, B.; Ko, Y.; Yeo, T.; Kim, E.; Kwon, O.; Kwon, O. Guided Regeneration of Rabbit Calvarial Defects Using Silk Fibroin Nanofiber-Poly(glycolic acid) Hybrid Scaffolds. ACS Biomater. Sci. Eng. 2019, 5, 5266–5272. [Google Scholar] [CrossRef]
- Yeo, T.; Ko, Y.; Kim, E.; Kwon, O.; Chung, H.; Kwon, O. Promoting bone regeneration by 3D-printed poly(glycolic acid)/hydroxyapatite composite scaffolds. J. Ind. Eng. Chem. 2021, 94, 343–351. [Google Scholar] [CrossRef]
- Zhang, Y.; Jian, Y.; Jiang, X.; Li, X.; Wu, X.; Zhong, J.; Jia, X.; Li, Q.; Wang, X.; Zhao, K.; et al. Stepwise degradable PGA-SF core-shell electrospinning scaffold with superior tenacity in wetting regime for promoting bone regeneration. Mater. Today Bio 2024, 26, 101023. [Google Scholar] [CrossRef]
- Ortiz, M.; Escobar-Garcia, D.; Alvarez-Pérez, M.; Pozos-Guillén, A.; Grandfils, C.; Flores, H. Evaluation of the Osteoblast Behavior to PGA Textile Functionalized with RGD as a Scaffold for Bone Regeneration. J. Nanomater. 2017, 2017, 4852190. [Google Scholar] [CrossRef]
- Nguyen, T.; Hu, C.; Sakthivel, R.; Nabilla, S.; Huang, Y.; Yu, J.; Cheng, N.; Kuo, Y.; Chung, R. Preparation of gamma poly-glutamic acid/hydroxyapatite/collagen composite as the 3D-printing scaffold for bone tissue engineering. Biomater. Res. 2022, 26, 21. [Google Scholar] [CrossRef]
- Jiang, X.; Jian, Y.; Zhang, Y.; Zhong, J.; Li, Q.; Wang, X.; Jia, X.; Wu, X.; Zhao, K.; Yao, Y. Dual-Mode Release of IL-4 and TCP from a PGA-SF Core-Shell Electrospinning Scaffold for Enhanced Bone Regeneration through Synergistic Immunoregulation and Osteogenesis. ACS Appl. Mater. Interfaces 2024, 16, 58148–58167. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, R.; Zuhri, M.; Norrrahim, M.; Misenan, M.; Jenol, M.; Samsudin, S.; Nurazzi, N.; Asyraf, M.; Supian, A.; Bangar, S.; et al. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers 2022, 14, 182. [Google Scholar] [CrossRef] [PubMed]
- Blázquez-Blázquez, E.; Pérez, E.; Lorenzo, V.; Cerrada, M. Crystalline Characteristics and Their Influence in the Mechanical Performance in Poly(ε-Caprolactone)/High Density Polyethylene Blends. Polymers 2019, 11, 1874. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Ruiz, F.; Núñez-Tapia, I.; Piña-Barba, M.; Alvarez-Pérez, M.; Guarino, V.; Serrano-Bello, J. Polycaprolactone for Hard Tissue Regeneration: Scaffold Design and In Vivo Implications. Bioengineering 2025, 12, 46. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Xu, Y.; Xia, D.; Zhu, Y.; Yoon, J.; Gu, R.; Liu, X.; Zhao, W.; Zhao, X.; et al. Fabrication and Application of a 3D-Printed Poly-ε-Caprolactone Cage Scaffold for Bone Tissue Engineering. Biomed Res. Int. 2020, 2020, 2087475. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, H.; Fu, Q.; Xie, X.; Song, Y.; Xu, M.; Li, J. 3D-printed polycaprolactone-chitosan based drug delivery implants for personalized administration. Mater. Des. 2022, 214, 110394. [Google Scholar] [CrossRef]
- Sowmya, B.; Hemavathi, A.; Panda, P. Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: A review. Prog. Biomater. 2021, 10, 91–117. [Google Scholar] [CrossRef]
- Li, H.; Huang, C.; Jin, X.; Ke, Q. An electrospun poly(ε-caprolactone) nanocomposite fibrous mat with a high content of hydroxyapatite to promote cell infiltration. RSC Adv. 2018, 8, 25228–25235. [Google Scholar] [CrossRef]
- Chong, L.; Hassan, M.; Sultana, N. Electrospun Polycaprolactone (PCL) and PCL/nano-hydroxyapatite (PCL/nHA)-based Nanofibers for Bone Tissue Engineering Application. In Proceedings of the 2015 10TH Asian Control Conference (ASCC), Sabah, Malaysia, 31 May–3 June 2015. [Google Scholar]
- Rijal, N.; Adhikari, U.; Khanal, S.; Pai, D.; Sankar, J.; Bhattarai, N. Magnesium oxide-poly(ε-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2018, 228, 18–27. [Google Scholar] [CrossRef]
- Sheng, L.; Jiang, R.; Zhu, Y.; Ji, Y. Electrospun Cellulose Nanocrystals/Polycaprolactone Nanocomposite Fiber Mats. J. Macromol. Sci. Part B-Phys. 2014, 53, 820–828. [Google Scholar] [CrossRef]
- Dutta, S.; Patel, D.; Seo, Y.; Park, C.; Lee, S.; Kim, J.; Kim, J.; Seonwoo, H.; Lim, K. In Vitro Biocompatibility of Electrospun Poly(ε-Caprolactone)/Cellulose Nanocrystals-Nanofibers for Tissue Engineering. J. Nanomater. 2019, 2019, 2061545. [Google Scholar] [CrossRef]
- Sumitha, M.; Shalumon, K.; Sreeja, V.; Jayakumar, R.; Nair, S.; Menon, D. Biocompatible and Antibacterial Nanofibrous Poly(ε-caprolactone)-Nanosilver Composite Scaffolds for Tissue Engineering Applications. J. Macromol. Sci. Part A-Pure Appl. Chem. 2012, 49, 131–138. [Google Scholar] [CrossRef]
- Zadehnajar, P.; Akbari, B.; Karbasi, S.; Mirmusavi, M. Preparation and characterization of poly ε-caprolactone-gelatin/multi-walled carbon nanotubes electrospun scaffolds for cartilage tissue engineering applications. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 326–337. [Google Scholar] [CrossRef]
- Polini, A.; Pisignano, D.; Parodi, M.; Quarto, R.; Scaglione, S. Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors. PLoS ONE 2011, 6, e26211. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Chou, C.; Dinda, A.; Potdar, P.; Mishra, N. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mater. Sci. Eng. C-Mater. Biol. Appl. 2014, 34, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Wang, S.; Zhao, X.; Zhu, Y.; Yu, J. 3D-Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering. Sci. Rep. 2017, 7, 13412. [Google Scholar] [CrossRef]
- Kumarasamy, R.; Natarajan, P.; Umapathy, V.; Roy, J.; Mironescu, M.; Palanisamy, C. Clinical applications and therapeutic potentials of advanced nanoparticles: A comprehensive review on completed human clinical trials. Front. Nanotechnol. 2024, 6, 1479993. [Google Scholar] [CrossRef]
- Kirk, J.; Ritter, G.; Waters, C.; Narisawa, S.; Millan, J.; Talton, J. Osteoconductivity and osteoinductivity of NanoFUSE® DBM. Cell Tissue Bank. 2013, 14, 33–44. [Google Scholar] [CrossRef]
- Sekhon, L.; Tomlinson, A.; Allen, B.; Lynch, J. 64. Immediate Postoperative Complications and Radiological Features of Interbody Fusion Between INFUSE BMP and Actifuse: A Randomized Prospective Trial. Spine J. 2009, 9, 32S–33S. [Google Scholar] [CrossRef]
- Tian, X.; Sun, L.; Yang, S.; Zhang, Y.; Hu, R.; Fu, D. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty. Chin. Med. J. 2008, 121, 745–751. [Google Scholar] [CrossRef]
- Epstein, N.E. Preliminary study showing safety/efficacy of nanoss bioactive versus vitoss as bone graft expanders for lumbar noninstrumented fusions. Surg. Neurol. Int. 2015, 6 (Suppl. S10), S318–S322. [Google Scholar] [CrossRef] [PubMed]
- Epstein, N.E. High lumbar noninstrumented fusion rates using lamina autograft and Nanoss/bone marrow aspirate. Surg. Neurol. Int. 2017, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Sukegawa, S.; Kanno, T.; Katase, N.; Shibata, A.; Takahashi, Y.; Furuki, Y. Clinical Evaluation of an Unsintered Hydroxyapatite/Poly-L-Lactide Osteoconductive Composite Device for the Internal Fixation of Maxillofacial Fractures. J. Craniofacial Surg. 2016, 27, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhu, Y.; Jiang, H.; Zhou, L.; Li, Y.; Wu, J.; Han, J.; Yang, C.; Jiang, J.; Ngai, T. Aggregation and aging of nanoparticle-protein complexes at interfaces studied by evanescent-light scattering microscopy. Aggregate 2024, 5, e538. [Google Scholar] [CrossRef]
- Ikeda, Y.; Nagasaki, Y. PEGylation Technology in Nanomedicine. Polym. Nanomed. 2012, 247, 115–140. [Google Scholar] [CrossRef]
- Chen, Y.; Su, Y.; Roffler, S. Polyethylene glycol immunogenicity in nanomedicine. Nat. Rev. Bioeng. 2025. [Google Scholar] [CrossRef]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef]
- Cristofaro, F.; Pani, G.; Pascucci, B.; Mariani, A.; Balsamo, M.; Donati, A.; Mascetti, G.; Rea, G.; Rizzo, A.; Visai, L. The NATO project: Nanoparticle-based countermeasures for microgravity-induced osteoporosis. Sci. Rep. 2019, 9, 17141. [Google Scholar] [CrossRef]
- Ibrahimi, S.; D’Andrea, L.; Gastaldi, D.; Rivolta, M.; Vena, P. Machine Learning approaches for the design of biomechanically compatible bone tissue engineering scaffolds. Comput. Methods Appl. Mech. Eng. 2024, 423, 116842. [Google Scholar] [CrossRef]
- Cosgriff-Hernandez, E.; Timmins, L. Model-Directed Design of Tissue Engineering Scaffolds. ACS Biomater. Sci. Eng. 2022, 8, 4622–4624. [Google Scholar] [CrossRef]
- Conev, A.; Litsa, E.; Perez, M.; Diba, M.; Mikos, A.; Kavraki, L. Machine Learning-Guided Three-Dimensional Printing of Tissue Engineering Scaffolds. Tissue Eng. Part A 2020, 26, 1359–1368. [Google Scholar] [CrossRef]
- Cendrero, A.; Martínez, F.; Requejo, W.; Lantada, A. Open-source library of tissue engineering scaffolds. Mater. Des. 2022, 223, 111154. [Google Scholar] [CrossRef]
Materials | Average Pore Size (µm) of Individual Materials | Average Compressive Strength (MPa)-Porous | Average Elastic/Young’s Modulus (GPa) | Average Biodegradation Time (Month) | Average Scaffold Porosity (%) | References | |
---|---|---|---|---|---|---|---|
Calcium Phosphate Derivatives | HAp | 50–500 | 1–70 | 5–60 | 2–12 | 30–80 | [38,39,40] |
TCP | 100–500 | 1–70 | 1–20 | 3–20 | 30–75 | [41,42,43,44] | |
BCP | 50–700 | 1–70 | 0.5–10 | 3–18 | 30–90 | [38,45,46] | |
Oxide-Based NMs | GO | nanoporous | 8.04–31.4 with HA | 380–470 (inherent) | 15 days (yellow mealworm) | 80–99 | [47,48,49,50] |
rGO | 1–170 | 44–107 in composite matrices | 250 (inherent) | Uncertain | 50–95 | [38,50,51] | |
MgO | nanoporous | 5–10 | 226–277 (dense) | 1–9 | 50–99.7 | [52,53,54,55] | |
ZnO | nanoporous | 3.01–18 with –TCP; 146 with PCL | <1 | Uncertain | 56.8–87 | [56,57,58] | |
TiO2 | mesoporous | 15–25 | <1 | Non degradable | 70–90 | [59,60,61,62] | |
SiO2 | micro/macro/mesoporous | 0.5–10 | <1 | 1–3 | 70–95 | [63,64] | |
IOs | nanoporous | 7.2–9.4 | <1 | 1–12 | 45–80 | [65,66,67] | |
Polymers and Polymer-Based NMs | PLGA | 50–200 | 0.9–35 | 0.0094–0.51 | 0.4–24 | 4–90 | [68,69,70] |
PLA | 168 | 1–70 | 0.0016–0.071 | 6–24 | 70–90 | [71,72] | |
PGA | 70–400 | 1–10 | 0.00012–0.00645 | 0.5–2 | 70–90 | [73,74] | |
PCL | 100–500 | 1–77 | 0.0001–3.2 | 14–36 | 50–90 | [75,76,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emon, N.U.; Zhang, L.; Osborne, S.D.; Lanoue, M.A.; Huang, Y.; Tian, Z.R. Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration. Nanomaterials 2025, 15, 1198. https://doi.org/10.3390/nano15151198
Emon NU, Zhang L, Osborne SD, Lanoue MA, Huang Y, Tian ZR. Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration. Nanomaterials. 2025; 15(15):1198. https://doi.org/10.3390/nano15151198
Chicago/Turabian StyleEmon, Nazim Uddin, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang, and Z. Ryan Tian. 2025. "Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration" Nanomaterials 15, no. 15: 1198. https://doi.org/10.3390/nano15151198
APA StyleEmon, N. U., Zhang, L., Osborne, S. D., Lanoue, M. A., Huang, Y., & Tian, Z. R. (2025). Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration. Nanomaterials, 15(15), 1198. https://doi.org/10.3390/nano15151198