Physical and Electrical Properties of Silicon Nitride Thin Films with Different Nitrogen–Oxygen Ratios
Abstract
1. Introduction
2. Experimental Section
2.1. Preparation of Thin Film
2.2. Sample Characterization
3. Results and Discussion
3.1. Morphology and Microstructure
3.2. Optical Testing and Characteristics
3.3. Composition and Band Structure Analysis
3.4. Electrical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Chung, G.Y.; Tin, C.C.; Williams, J.R.; McDonald, K.; Chanana, R.K.; Weller, R.A.; Pantelides, S.T.; Feldman, L.C.; Holland, O.W.; Das, M.K.; et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide. IEEE Electron Device Lett. 2001, 22, 176–178. [Google Scholar] [CrossRef]
- Dimitrijev, S.; Jamet, P. Advances in SiC power MOSFET technology. Microelectron. Reliab. 2003, 43, 225–233. [Google Scholar] [CrossRef]
- Green, M.L.; Gusev, E.P.; Degraeve, R.; Garfunkel, E.L. Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits. J. Appl. Phys. 2001, 90, 2057–2121. [Google Scholar] [CrossRef]
- Hamedani, Y.; Macha, P.; Bunning, T.J.; Naik, R.R.; Vasudev, M.C. Plasma-enhanced chemical vapor deposition: Where we are and the outlook for the future. In Chemical Vapor Deposition-Recent Advances and Applications in Optical, Solar Cells and Solid State Devices; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef]
- Filatova, E.A.; Hausmann, D.M.; Elliott, S.D. Understanding the mechanism of SiC plasma-enhanced chemical vapor deposition (PECVD) and developing routes toward SiC atomic layer deposition (ALD) with density functional theory. ACS Appl. Mater. Interfaces 2018, 10, 15216–15225. [Google Scholar] [CrossRef] [PubMed]
- Duminica, F.D.; Maury, F.; Hausbrand, R. Growth of TiO2 thin films by AP-MOCVD on stainless steel substrates for photocatalytic applications. Surf. Coat. Technol. 2007, 201, 9304–9308. [Google Scholar] [CrossRef]
- Liao, J.H.; Lin, H.J.; Lue, H.T.; Du, P.Y.; Hsieh, J.Y.; Yang, L.W.; Yang, T.; Chen, K.C.; Lu, C.Y. Physical and electrical characteristics of silicon oxynitride films with various refractive indices. J. Phys. D Appl. Phys. 2009, 42, 175102. [Google Scholar] [CrossRef]
- San Andrés, E.; Del Prado, A.; Mártil, I.; Díaz, G.G.; Martinez, F.L.; Bravo, D.; López, F.J. Composition and optical properties of silicon oxynitride films deposited by electron cyclotron resonance. Vacuum 2002, 67, 507–512. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Yano, H.; Hatayama, T.; Uraoka, Y.; Fuyuki, T. NH3 plasma pretreatment of 4H-SiC(0001) surface for reduction of interface states in metal–oxide–semiconductor devices. Appl. Phys. Express 2010, 3, 026201. [Google Scholar] [CrossRef]
- Varley, J.B.; Janotti, A.; Franchini, C.; Van de Walle, C.G. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys. Rev. B 2012, 85, 081109. [Google Scholar] [CrossRef]
- Qin, Y.; Albano, B.; Spencer, J.; Lundh, J.S.; Wang, B.; Buttay, C.; Tadjer, M.; DiMarino, C.; Zhang, Y. Thermal management and packaging of wide and ultra-wide bandgap power devices: A review and perspective. J. Phys. D Appl. Phys. 2023, 56, 093001. [Google Scholar] [CrossRef]
- Konofaos, N. Electrical characterisation of SiON/n-Si structures for MOS VLSI electronics. Microelectron. J. 2004, 35, 421–425. [Google Scholar] [CrossRef]
- Ohtsubo, K.; Saito, Y.; Hirayama, M.; Sugawa, S.; Aharoni, H.; Ohmi, T. Thin SiON Film Grown at Low Temperature (400circhboxC) by Microwave-Excited High-DensityhboxKr/hboxO2/hboxN2 Plasma. IEEE Trans. Plasma Sci. 2006, 34, 2443–2449. [Google Scholar] [CrossRef]
- Albertin, K.F.; Pereyra, I. Study of PECVD SiOxNy films dielectric properties with different nitrogen concentration utilizing MOS capacitors. Microelectron. Eng. 2005, 77, 144–149. [Google Scholar] [CrossRef]
- Salih, A.K.; Fiedler, S.; Irvine, C.P.; Matar, F.; Phillips, M.R.; Ton-That, C. Defect passivation and enhanced UV emission in β-Ga2O3 via remote fluorine plasma treatment. Appl. Surf. Sci. 2025, 687, 162250. [Google Scholar] [CrossRef]
- Wang, F.H.; Chen, K.N.; Hsu, C.M.; Liu, M.C.; Yang, C.F. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates. Nanomaterials 2016, 6, 88. [Google Scholar] [CrossRef] [PubMed]
- Kufer, D.; Konstantatos, G. Photo-FETs: Phototransistors Enabled by 2D and 0D Nanomaterials. ACS Photonics 2016, 3, 2197–2210. [Google Scholar] [CrossRef]
- Xia, X.; Feng, Q.; Tao, P.; Chen, Y.; Xu, M.; Du, G.; Liang, H. Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Appl. Phys. Lett. 2016, 108, 20. [Google Scholar] [CrossRef]
- Król, K.; Konarski, P.; Miśnik, M.; Sochacki, M.; Szmidt, J. The Effect of Phosphorus Incorporation into SiO2/4H-SiC (0001) Interface on Electrophysical Properties of MOS Structure. Acta Phys. Pol. A 2014, 126, 1100–1103. [Google Scholar] [CrossRef]
- Romanyuk, O.; Gordeev, I.; Paszuk, A.; Supplie, O.; Stoeckmann, J.P.; Houdkova, J.; Ukraintsev, E.; Bartoš, I.; Jiříček, P.; Hannappel, T. GaP/Si (0 0 1) interface study by XPS in combination with Ar gas cluster ion beam sputtering. Appl. Surf. Sci. 2020, 514, 145903. [Google Scholar] [CrossRef]
- Gao, Y.; Cansizoglu, H.; Polat, K.G.; Ghandiparsi, S.; Kaya, A.; Mamtaz, H.H.; Mayet, A.S.; Wang, Y.; Zhang, X.; Yamada, T.; et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics 2017, 11, 301–308. [Google Scholar] [CrossRef]
- Chen, X.; Liu, K.; Zhang, Z.; Wang, C.; Li, B.; Zhao, H.; Zhao, D.; Shen, D. Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga2O3 Nanowires Array Film Schottky Junction. ACS Appl. Mater. Interfaces 2016, 8, 4185–4191. [Google Scholar] [CrossRef]
- Guo, D.; Wu, Z. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt. Mater. Express 2014, 4, 1067–1076. [Google Scholar] [CrossRef]
- Visoly-Fisher, I.; Cohen, S.R. Understanding the beneficial role of grain boundaries in polycrystalline solar cells from single-grain-boundary scanning probe microscopy. Adv. Funct. Mater. 2006, 16, 649–660. [Google Scholar] [CrossRef]
- Hetzer, M.J.; Strzhemechny, Y.M.; Gao, M.; Contreras, M.A.; Zunger, A.; Brillson, L.J. Direct observation of copper depletion and potential changes at copper indium gallium diselenide grain boundaries. Appl. Phys. Lett. 2005, 86, 162105. [Google Scholar] [CrossRef]
- Okamoto, D.; Yano, H.; Kotake, S.; Hirata, K.; Hatayama, T.; Fuyuki, T. Improved Inversion Channel Mobility in Si-face 4H-SiC MOSFETs by Phosphorus Incorporation Technique. MRS Proc. 2010, 1246, 1246–B06–06. [Google Scholar] [CrossRef]
- Xu, H.Y.; Wan, C.P.; Ao, J.P. Improved Electrical Properties of 4H-SiC MOS Devices with High Temperature Thermal Oxidation. Mater. Sci. Forum 2019, 954, 99–103. [Google Scholar] [CrossRef]
- Shi, F.; Zhang, S.; Xue, C. Influence of annealing time on microstructure of one-dimensional Ga2O3 nanorods. J. Alloys. Compd. 2010, 498, 77–80. [Google Scholar] [CrossRef]
- Damberga, D.; Viter, R.; Fedorenko, V.; Iatsunskyi, I.; Coy, E.; Graniel, O.; Balme, S.; Miele, P.; Bechelany, M. Photoluminescence Study of Defects in ZnO-Coated Polyacrylonitrile Nanofibers. J. Phys. Chem. C 2020, 124, 9434–9441. [Google Scholar] [CrossRef]
- Rogalski, A.; Bielecki, Z.; Mikołajczyk, J.; Wojtas, J. Ultraviolet Photodetectors: From Photocathodes to Low-Dimensional Solids. Sensors 2023, 23, 4452. [Google Scholar] [CrossRef]
- Shi, L.; Chen, K.; Zhai, A.; Li, G.; Fan, M.; Hao, Y.; Zhu, F.; Zhang, H.; Cui, Y. Status and outlook of metal–inorganic semiconductor–metal photodetectors. Laser Photonics Rev. 2020, 15, 48. [Google Scholar] [CrossRef]
- Weng, W.Y.; Hsueh, T.J.; Chang, S.J.; Huang, G.J.; Hsueh, H.T. A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film. IEEE Sens. J. 2011, 11, 999–1003. [Google Scholar] [CrossRef]
- Kobayashi, T.; Okuda, T.; Tachiki, K.; Ito, K.; Matsushita, Y.; Kimoto, T. Design and formation of SiC (0001)/SiO2 interfaces via Si deposition followed by low-temperature oxidation and high-temperature nitridation. Appl. Phys. Express 2020, 13, 091003. [Google Scholar] [CrossRef]
- Ohashi, T.; Nakabayashi, Y.; Shimizu, T.; Takao, K.; Iijima, R. Investigation of nitridation and oxidation reactions at SiC/SiO2 interfaces in NO annealing and modeling of their quantitative impacts on mobility of SiC MOSFETs. Jpn. J. Appl. Phys. 2017, 56, 106502. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, T.; Li, X.; Li, L.; Ao, J.P. Application of p-type NiO deposited by magnetron reactive sputtering on GaN vertical diodes. Mater. Sci. Semicond. Process. 2021, 125, 105628. [Google Scholar] [CrossRef]
- Liang, Y. Preparation of Nanometer Sized Cuprous Oxide and its Photocatalytic Performance over Four Nitrophenol. Appl. Mech. Mater. 2013, 333, 1853–1856. [Google Scholar] [CrossRef]
- Kohli, S.; Rithner, C.D.; Dorhout, P.K.; Dummer, A.M.; Menoni, C.S. Comparison of nanometer-thick films by x-ray reflectivity and spectroscopic ellipsometry. Rev. Sci. Instrum. 2006, 76, 023906. [Google Scholar] [CrossRef]
- Price, J.; Hung, P.Y.; Rhoad, T.; Foran, B.; Diebold, A.C. Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody–Lorentz parameterized model. Appl. Phys. Lett. 2004, 85, 1701–1703. [Google Scholar] [CrossRef]
- Jellison, G.E.; Modine, F.A. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996, 69, 371–373. [Google Scholar] [CrossRef]
- Qi, X.; Song, Y.; Sheng, Y.; Zou, H.; Zhang, H.; Zhao, H.; Shi, Z. Controllable synthesis and luminescence properties of TiO2:Eu3+ nanorods, nanoparticles and submicrospheres by hydrothermal method. Opt. Mater. 2014, 38, 193–197. [Google Scholar] [CrossRef]
- Ao, L.; Pham, A.; Xiang, X.; Li, S.; Zu, X. Defect induced charge trapping in C-doped α-Al2O3. J. Phys. D 2017, 122, 025702. [Google Scholar] [CrossRef]
- Rawal, S.K.; Chawla, V.; Chandra, R.; Chawla, A.K.; Jayaganthan, R. Effect of ambient gas on structural and optical properties of titanium oxynitride films. Appl. Surf. Sci. 2010, 256, 4129–4135. [Google Scholar] [CrossRef]
- Dong, L.; Jia, R.; Xin, B.; Peng, B.; Zhang, Y. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci. Rep. 2017, 7, 40160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-J.; Liu, Y.-C.; Wang, Z.-Y.; Gu, L.; Shen, Y.; Ma, H.-P. Physical and Electrical Properties of Silicon Nitride Thin Films with Different Nitrogen–Oxygen Ratios. Nanomaterials 2025, 15, 958. https://doi.org/10.3390/nano15130958
Chen W-J, Liu Y-C, Wang Z-Y, Gu L, Shen Y, Ma H-P. Physical and Electrical Properties of Silicon Nitride Thin Films with Different Nitrogen–Oxygen Ratios. Nanomaterials. 2025; 15(13):958. https://doi.org/10.3390/nano15130958
Chicago/Turabian StyleChen, Wen-Jie, Yang-Chao Liu, Zhen-Yu Wang, Lin Gu, Yi Shen, and Hong-Ping Ma. 2025. "Physical and Electrical Properties of Silicon Nitride Thin Films with Different Nitrogen–Oxygen Ratios" Nanomaterials 15, no. 13: 958. https://doi.org/10.3390/nano15130958
APA StyleChen, W.-J., Liu, Y.-C., Wang, Z.-Y., Gu, L., Shen, Y., & Ma, H.-P. (2025). Physical and Electrical Properties of Silicon Nitride Thin Films with Different Nitrogen–Oxygen Ratios. Nanomaterials, 15(13), 958. https://doi.org/10.3390/nano15130958