Advancements in Titanium Dioxide Nanotube-Based Sensors for Medical Diagnostics: A Two-Decade Review
Abstract
1. Introduction
2. TiO2 Nanotubes: Synthesis and Properties
2.1. Synthesis Approaches
2.1.1. Electrochemical Anodization
2.1.2. Hydrothermal and Solvothermal Synthesis
2.1.3. Template-Assisted Synthesis
2.1.4. Electrospinning for Hybrid and Composite Nanotubes
2.2. Structural and Surface Characteristics
2.3. Electronic and Optical Properties in Sensing Context
2.4. Functional Modifications for Enhanced Sensitivity and Selectivity
2.4.1. Enzyme-Modified Sensors
2.4.2. Enzyme-Free (Electrocatalytic) Sensors
2.4.3. Antibody-/Antigen-Based Immunosensors
2.4.4. Aptamer-Modified Sensors
2.4.5. Molecularly Imprinted Polymer (MIP) Sensors
3. Applications of TiO2 Nanotubes in Medical Diagnostics
3.1. Metabolic Disorders and Chronic Disease Monitoring
3.1.1. Glucose
3.1.2. Cholesterol
3.1.3. Uric Acid
3.1.4. Lactate
3.1.5. Homocysteine
3.2. Cardiovascular Health
3.2.1. Human Cardiac Troponin I
3.2.2. Hemoglobin
3.3. Cancer Biomarkers
3.3.1. Prostate-Specific Antigen (PSA)
3.3.2. Telomerase Activity
3.3.3. Exosomes
3.3.4. Hydrogen Sulfide
3.4. Infectious Diseases
3.4.1. SARS-CoV-2
3.4.2. Tuberculosis
4. Challenges and Future Scope
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sengupta, J.; Hussain, C.M. Carbon Nanotube-Based Field-Effect Transistor Biosensors for Biomedical Applications: Decadal Developments and Advancements (2016–2025). Biosensors 2025, 15, 296. [Google Scholar] [CrossRef]
- Tyagi, R.; Maurya, A. Titanium Dioxide-Based Multifunctional Hybrid Nanomaterials: A Comprehensive Study of Their Biological Applications. In Titanium Dioxide-Based Multifunctional Hybrid Nanomaterials: Application on Health, Energy and Environment; Prakash, J., Cho, J., Ruzimuradov, O., Fang, D., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 291–312. ISBN 978-3-031-80625-4. [Google Scholar]
- Zeng, Y.; Motola, M. Rediscovering Selectively Etched Single-Walled TiO2 Nanotubes: A Review to Reignite Interest. Chem. Eng. J. Adv. 2025, 22, 100752. [Google Scholar] [CrossRef]
- AlAqad, K.M. Recent Advances in TiO2 Nanotube Arrays-Based Electrocatalysts for Electrochemical Water Splitting and CO2 Reduction. Ionics 2025, 1–33. [Google Scholar] [CrossRef]
- Hossen, A.; Ikreedeegh, R.R.; Aziz, A.A.; Zerga, A.Y.; Tahir, M. Carbon-Based Nanomaterials (CNMs) Modified TiO2 Nanotubes (TNTs) Photo-Driven Catalysts for Sustainable Energy and Environmental Applications: A Comprehensive Review. J. Environ. Chem. Eng. 2024, 12, 114088. [Google Scholar] [CrossRef]
- Alijani, M.; Sopha, H.; Ng, S.; Macak, J.M. High Aspect Ratio TiO2 Nanotube Layers Obtained in a Very Short Anodization Time. Electrochim. Acta 2021, 376, 138080. [Google Scholar] [CrossRef]
- Hernández-López, J.M.; Conde, A.; Damborenea, J.J.d.; Arenas, M.A. TiO2 Nanotubes with Tunable Morphologies. RSC Adv. 2014, 4, 62576–62585. [Google Scholar] [CrossRef]
- Lingaraju, K.; Basavaraj, R.; Jayanna, K.; Havana, S.; Devaraja, S.; Swamy, H.K.; Nagaraju, G.; Nagabhushana, H.; Naika, H.R. Biocompatible Fabrication of TiO2 Nanoparticles: Antimicrobial, Anticoagulant, Antiplatelet, Direct Hemolytic and Cytotoxicity Properties. Inorg. Chem. Commun. 2021, 127, 108505. [Google Scholar] [CrossRef]
- Sun, S.; Liao, X.; Yin, G.; Yao, Y.; Huang, Z.; Pu, X. Enhanced Electrochemical Performance of TiO2 Nanotube Array Electrodes by Controlling the Introduction of Substoichiometric Titanium Oxides. J. Alloys Compd. 2016, 680, 538–543. [Google Scholar] [CrossRef]
- Hamazaki, S.; Inoue, K.; Matsuda, A.; Kawamura, G. Enhanced Photoelectrochemical Property of TiO2 Nanotube Array Photoanode Deposited with Al, Cr-Codoped SrTiO3 Nanocubes. ACS Omega 2024, 9, 2795–2802. [Google Scholar] [CrossRef]
- Siavash Moakhar, R.; Mirzaei, M.; Elizabeth Flynn, S.; Jalali, M.; Sanati, A.; Mahshid, S. Photoelectrochemical Sensing of Titanium Oxide Nanostructures for the Detection of Glucose: Fabrication Methods and Signal Enhancement Strategies. Microchem. J. 2024, 201, 110528. [Google Scholar] [CrossRef]
- Tasyurek, L.B.; Isik, E.; Isik, I.; Kilinc, N. Enhancing the Performance of TiO2 Nanotube-Based Hydrogen Sensors through Crystal Structure and Metal Electrode. Int. J. Hydrogen Energy 2024, 54, 678–690. [Google Scholar] [CrossRef]
- Goddeti, K.C.; Lee, H.; Jeon, B.; Park, J.Y. Enhancing Hot Electron Collection with Nanotube-Based Three-Dimensional Catalytic Nanodiode under Hydrogen Oxidation. Chem. Commun. 2018, 54, 8968–8971. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, B.; Bai, J.; Li, L.; Jin, Z.; Zhang, J.; Li, J.; Liu, Y.; Cai, W.; Zhu, X. Self-Organized TiO2 Nanotube Array Sensor for the Determination of Chemical Oxygen Demand. Adv. Mater. 2008, 20, 1044–1049. [Google Scholar] [CrossRef]
- Nakpan, P.; Aeimbhu, A. Fabrication of Titanium Dioxide Nanotubes by Difference the Anodization Voltage and Time. Mater. Today Proc. 2021, 47, 3436–3440. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Y.; Liang, K.; Zhang, L.; Zhang, S. Study of the Dimensions and Photoelectric Properties of TiO2 NTs Prepared by the Double Ti-Electrode Oxidation Method. J. Alloys Compd. 2021, 859, 157878. [Google Scholar] [CrossRef]
- Garlapally, R.; MP, N.; Rao, B.M.; Venkateswarlu, B.; Neella, N.; Manjunatha, C. Recent Advances in Anodically Fabricated Amorphous TiO2 Nanotubes Crystallization Techniques and Their Applications. Phys. Scr. 2024, 99, 062002. [Google Scholar] [CrossRef]
- Mazare, A.; Hwang, I.; Tesler, A.B. Surface Modification of TiO2 Nanotubes via Pre-Loaded Hydroxyapatite towards Enhanced Bioactivity. Mater. Today Commun. 2024, 39, 109216. [Google Scholar] [CrossRef]
- Kang, Q.; Yang, L.; Cai, Q. An Electro-Catalytic Biosensor Fabricated with Pt–Au Nanoparticle-Decorated Titania Nanotube Array. Bioelectrochemistry 2008, 74, 62–65. [Google Scholar] [CrossRef]
- Kumar, B.; Sinha, S.K. Nanostructured Cu2O Deposited on TiO2 Nanotube Arrays for Ultra-Sensitive Non-Enzymatic Cholesterol Electrochemical Biosensor. Mater. Today Commun. 2023, 37, 107171. [Google Scholar] [CrossRef]
- Lee, H.-C.; Zhang, L.-F.; Lin, J.-L.; Chin, Y.-L.; Sun, T.-P. Development of Anodic Titania Nanotubes for Application in High Sensitivity Amperometric Glucose and Uric Acid Biosensors. Sensors 2013, 13, 14161–14174. [Google Scholar] [CrossRef]
- Farsinezhad, S.; Mohammadpour, A.; Dalrymple, A.N.; Geisinger, J.; Kar, P.; Brett, M.J.; Shankar, K. Transparent Anodic TiO2 Nanotube Arrays on Plastic Substrates for Disposable Biosensors and Flexible Electronics. J. Nanosci. Nanotechnol. 2013, 13, 2885–2891. [Google Scholar] [CrossRef]
- He, L.; Piao, G.; Yin, X.; Feng, J.; Zhang, T.; Hu, C.; Bai, Y.; Kim, J.M.; Jin, M. A Novel Electrochemical Biosensor Based on TiO2 Nanotube Array Films for Highly Sensitive Detection of Exosomes. Talanta 2025, 286, 127545. [Google Scholar] [CrossRef] [PubMed]
- Vadlamani, B.S.; Uppal, T.; Verma, S.C.; Misra, M. Functionalized TiO2 Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. Sensors 2020, 20, 5871. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Yan, B.; Wu, B.; Ma, J.; Wang, X.; Qiao, B.; Tu, J.; Pei, H.; Chen, D.; et al. Gold and Platinum Nanoparticle-Functionalized TiO2 Nanotubes for Photoelectrochemical Glucose Sensing. ACS Omega 2022, 7, 2474–2483. [Google Scholar] [CrossRef] [PubMed]
- Machreki, M.; Chouki, T.; Tyuliev, G.; Žigon, D.; Ohtani, B.; Loukanov, A.; Stefanov, P.; Emin, S. Defective TiO2 Nanotube Arrays for Efficient Photoelectrochemical Degradation of Organic Pollutants. ACS Omega 2023, 8, 21605–21617. [Google Scholar] [CrossRef]
- Akhbari Varkani, R.; Rafiee-Pour, H.-A.; Noormohammadi, M. One Step Immobilization of Glucose Oxidase on TiO2 Nanotubes towards Glucose Biosensing. Microchem. J. 2021, 170, 106712. [Google Scholar] [CrossRef]
- Isik, E.; Tasyurek, L.B.; Isik, I.; Kilinc, N. Synthesis and Analysis of TiO2 Nanotubes by Electrochemical Anodization and Machine Learning Method for Hydrogen Sensors. Microelectron. Eng. 2022, 262, 111834. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Li, J.-S.; Wan, H.-H.; Ren, F.; Esquivel-Upshaw, J.F. Fabrication of TiO2 Nanotube Arrays by Progressive Anodization of Ti Thin Film on Insulated Substrates. Materials 2025, 18, 1219. [Google Scholar] [CrossRef]
- Puga, M.L.; Venturini, J.; ten Caten, C.S.; Bergmann, C.P. Influencing Parameters in the Electrochemical Anodization of TiO2 Nanotubes: Systematic Review and Meta-Analysis. Ceram. Int. 2022, 48, 19513–19526. [Google Scholar] [CrossRef]
- Eddy, D.R.; Permana, M.D.; Sakti, L.K.; Sheha, G.A.N.; Solihudin; Hidayat, S.; Takei, T.; Kumada, N.; Rahayu, I. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials 2023, 13, 704. [Google Scholar] [CrossRef]
- Benčina, M.; Iglič, A.; Mozetič, M.; Junkar, I. Crystallized TiO2 Nanosurfaces in Biomedical Applications. Nanomaterials 2020, 10, 1121. [Google Scholar] [CrossRef] [PubMed]
- Saker, R.; Shammout, H.; Regdon, G.; Sovány, T. An Overview of Hydrothermally Synthesized Titanate Nanotubes: The Factors Affecting Preparation and Their Promising Pharmaceutical Applications. Pharmaceutics 2024, 16, 635. [Google Scholar] [CrossRef]
- López Zavala, M.Á.; Lozano Morales, S.A.; Ávila-Santos, M. Synthesis of Stable TiO2 Nanotubes: Effect of Hydrothermal Treatment, Acid Washing and Annealing Temperature. Heliyon 2017, 3, e00456. [Google Scholar] [CrossRef]
- Aphairaj, D.; Wirunmongkol, T.; Niyomwas, S.; Pavasupree, S.; Limsuwan, P. Synthesis of Anatase TiO2 Nanotubes Derived from a Natural Leucoxene Mineral by the Hydrothermal Method. Ceram. Int. 2014, 40, 9241–9247. [Google Scholar] [CrossRef]
- Alkanad, K.; Hezam, A.; Al-Zaqri, N.; Bajiri, M.A.; Alnaggar, G.; Drmosh, Q.A.; Almukhlifi, H.A.; Neratur Krishnappagowda, L. One-Step Hydrothermal Synthesis of Anatase TiO2 Nanotubes for Efficient Photocatalytic CO2 Reduction. ACS Omega 2022, 7, 38686–38699. [Google Scholar] [CrossRef] [PubMed]
- Reghunath, S.; Pinheiro, D.; Kr, S.D. A Review of Hierarchical Nanostructures of TiO2: Advances and Applications. Appl. Surf. Sci. Adv. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Dey, S.; Roy, S.C. Designing TiO2 Nanostructures through Hydrothermal Growth: Influence of Process Parameters and Substrate Position. Nano Express 2021, 2, 010028. [Google Scholar] [CrossRef]
- Nukunudompanich, M.; Chuangchote, S.; Wootthikanokkhan, J.; Suzuki, Y. TiO2 Nanorods Prepared from Anodic Aluminum Oxide Template and Their Applications in Dye-Sensitized Solar Cells. Int. Lett. Chem. Phys. Astron. 2015, 46, 30–36. [Google Scholar] [CrossRef]
- Heo, S.Y.; Kim, D.J.; Jeon, H.; Jung, B.; Kang, Y.S.; Kim, J.H. Vertically Aligned Anatase TiO2 Nanotubes on Transparent Conducting Substrates Using Polycarbonate Membranes. RSC Adv. 2013, 3, 13681–13684. [Google Scholar] [CrossRef]
- Artoshina, O.V.; Milovich, F.O.; Rossouw, A.; Gorberg, B.L.; Iskhakova, L.D.; Ermakov, R.P.; Semina, V.K.; Kochnev, Y.K.; Nechaev, A.N.; Apel, P.Y. Structure and Phase Composition of Thin TiO2 Films Grown on the Surface of Metallized Track-Etched Polyethylene Terephthalate Membranes by Reactive Magnetron Sputtering. Inorg. Mater. 2016, 52, 945–954. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, M.A.; Nazir, A.; Arshad, S.N.; Qadir, M.B.; Khaliq, Z.; Khan, Z.S.; Satti, A.N.; Mushtaq, B.; Shahzad, A. Triaxial Electrospun Mixed-Phased TiO2 Nanofiber-in-Nanotube Structure with Enhanced Photocatalytic Activity. Microporous Mesoporous Mater. 2021, 320, 111104. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Hamza, A.M.; Al-Deyab, S.S.; Qurashi, A.; Kim, H.Y. Titanium-Based Polymeric Electrospun Nanofiber Mats as a Novel Organic Semiconductor. Mater. Sci. Eng. B 2012, 177, 34–42. [Google Scholar] [CrossRef]
- Farrugia, C.; Di Mauro, A.; Lia, F.; Zammit, E.; Rizzo, A.; Privitera, V.; Impellizzeri, G.; Buccheri, M.A.; Rappazzo, G.; Grech, M.; et al. Suitability of Different Titanium Dioxide Nanotube Morphologies for Photocatalytic Water Treatment. Nanomaterials 2021, 11, 708. [Google Scholar] [CrossRef] [PubMed]
- Ghanavatinejad, M.; Ghorashi, S.M.B.; Chamanzadeh, Z. Preparation and Characterization of Vertical Regular Arrayed and Needle-Shaped Irregular Titanium Dioxide Nanotubes for Dye-Sensitized Solar Cells. Optik 2020, 203, 163432. [Google Scholar] [CrossRef]
- Li, L.; Liu, W.; Dong, H.; Gui, Q.; Hu, Z.; Li, Y.; Liu, J. Surface and Interface Engineering of Nanoarrays toward Advanced Electrodes and Electrochemical Energy Storage Devices. Adv. Mater. 2021, 33, 2004959. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, B.; Ji, J.; Li, K.; Cao, J.; Feng, Q.; Huang, H. Effective Regulation of Surface Bridging Hydroxyls on TiO2 for Superior Photocatalytic Activity via Ozone Treatment. Appl. Catal. B Environ. 2022, 304, 120952. [Google Scholar] [CrossRef]
- Cui, H.; Yao, C.; Cang, Y.; Liu, W.; Zhang, Z.; Miao, Y.; Xin, Y. Oxygen Vacancy-Regulated TiO2 Nanotube Photoelectrochemical Sensor for Highly Sensitive and Selective Detection of Tetracycline Hydrochloride. Sens. Actuators B Chem. 2022, 359, 131564. [Google Scholar] [CrossRef]
- Ma, X.; Deng, L.; Zou, Z.; Pan, Z.; Feng, L.; Huang, Z.; Liang, Z.; Liu, X.; Li, M.; Su, Z.; et al. Novel Portable Photoelectrochemical Sensor Based on CdS/Au/TiO2 Nanotube Arrays for Sensitive, Non-Invasive, and Instantaneous Uric Acid Detection in Saliva. Talanta 2024, 271, 125646. [Google Scholar] [CrossRef]
- Kiziltan, D.; Vural, T.; Bayram, C.; Ozturk, S.; Bozdogan, B.; Yaman, Y.T.; Abaci, S.; Denkbas, E.B. Development of Titania Nanotube-Based Electrochemical Immunosensor and Determination of Prostate Specific Antigen. Anal. Sci. 2018, 34, 789–794. [Google Scholar] [CrossRef]
- Hazra, A.; Jan, A.; Tripathi, A.; Kundu, S.; Boppidi, P.K.R.; Gangopadhyay, S. Optimized Resistive Switching in TiO2 Nanotubes by Modulation of Oxygen Vacancy Through Chemical Reduction. IEEE Trans. Electron Devices 2020, 67, 2197–2204. [Google Scholar] [CrossRef]
- Hazra, A. A Physical Modeling of TiO2 Nanotube Array-Based Capacitive Vapor Sensor. IEEE Trans. Nanotechnol. 2018, 17, 93–99. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, W.; Zhang, Y.; Yang, X.; Zhong, M. Insights on Interfacial Charge Transfer across MoS2/TiO2-NTAs Nanoheterostructures for Enhanced Photodegradation and Biosensing & gas-Sensing Performance. J. Mol. Struct. 2021, 1244, 131240. [Google Scholar] [CrossRef]
- Terracciano, M.; Galstyan, V.; Rea, I.; Casalino, M.; De Stefano, L.; Sbervegleri, G. Chemical Modification of TiO2 Nanotube Arrays for Label-Free Optical Biosensing Applications. Appl. Surf. Sci. 2017, 419, 235–240. [Google Scholar] [CrossRef]
- Hu, Z.; Rong, J.; Zhan, Z.; Yu, X. Glucose Biosensor Based on Glucose Oxidase Immobilized on Multi-Vacancy TiO2 Nanotube Arrays. Int. J. Electrochem. Sci. 2019, 14, 9661–9670. [Google Scholar] [CrossRef]
- Feng, C.; Xu, G.; Liu, H.; Lv, J.; Zheng, Z.; Wu, Y. Glucose Biosensors Based on Ag Nanoparticles Modified TiO2 Nanotube Arrays. J. Solid State Electrochem. 2014, 18, 163–171. [Google Scholar] [CrossRef]
- Suneesh, P.V.; Sara Vargis, V.; Ramachandran, T.; Nair, B.G.; Satheesh Babu, T.G. Co–Cu Alloy Nanoparticles Decorated TiO2 Nanotube Arrays for Highly Sensitive and Selective Nonenzymatic Sensing of Glucose. Sens. Actuators B Chem. 2015, 215, 337–344. [Google Scholar] [CrossRef]
- Stanley, J.; Sree, R.J.; Ramachandran, T.; Babu, T.G.S.; Nair, B.G. Vertically Aligned TiO2 Nanotube Arrays Decorated with CuO Mesoclusters for the Nonenzymatic Sensing of Glucose. J. Nanosci. Nanotechnol. 2017, 17, 2732–2739. [Google Scholar] [CrossRef]
- Chen, X.; Li, G.; Zhang, G.; Hou, K.; Pan, H.; Du, M. Self-Assembly of Palladium Nanoparticles on Functional TiO2 Nanotubes for a Nonenzymatic Glucose Sensor. Mater. Sci. Eng. C 2016, 62, 323–328. [Google Scholar] [CrossRef]
- Saputra, H.A.; Karim, M.M. Enzymatic and Enzyme-Free Electrochemical Lactate Sensors: A Review of the Recent Developments. Electrochem. Sci. Adv. 2025, 5, e202400021. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Chang, T.-F.M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Roles of TiO2 in the Highly Robust Au Nanoparticles-TiO2 Modified Polyaniline Electrode towards Non-Enzymatic Sensing of Glucose. Talanta 2020, 212, 120780. [Google Scholar] [CrossRef]
- Ansari, A.A.; Alhoshan, M.; Alsalhi, M.S.; Aldwayyan, A.S. Prospects of Nanotechnology in Clinical Immunodiagnostics. Sensors 2010, 10, 6535–6581. [Google Scholar] [CrossRef] [PubMed]
- Mayol, B.; Qubbaj, I.Z.; Nava-Granados, J.; Vasquez, K.; Keene, S.T.; Sempionatto, J.R. Aptamer and Oligonucleotide-Based Biosensors for Health Applications. Biosensors 2025, 15, 277. [Google Scholar] [CrossRef]
- Dai, P.; Liu, C.; Xie, C.; Ke, J.; He, Y.; Wei, L.; Chen, L.; Jin, J. TiO2 Nanotubes Loaded with CdS Nanocrystals as Enhanced Emitters of Electrochemiluminescence: Application to an Assay for Prostate-Specific Antigen. Anal. Bioanal. Chem. 2020, 412, 1375–1384. [Google Scholar] [CrossRef]
- Sajini, T.; Gigimol, M.G.; Mathew, B. A Brief Overview of Molecularly Imprinted Polymers Supported on Titanium Dioxide Matrices. Mater. Today Chem. 2019, 11, 283–295. [Google Scholar] [CrossRef]
- Sun, L.; Guan, J.; Xu, Q.; Yang, X.; Wang, J.; Hu, X. Synthesis and Applications of Molecularly Imprinted Polymers Modified TiO2 Nanomaterials: A Review. Polymers 2018, 10, 1248. [Google Scholar] [CrossRef]
- Li, X.; Yao, J.; Liu, F.; He, H.; Zhou, M.; Mao, N.; Xiao, P.; Zhang, Y. Nickel/Copper Nanoparticles Modified TiO2 Nanotubes for Non-Enzymatic Glucose Biosensors. Sens. Actuators B Chem. 2013, 181, 501–508. [Google Scholar] [CrossRef]
- Yang, W.; Xu, W.; Zhang, N.; Lai, X.; Peng, J.; Cao, Y.; Tu, J. TiO2 Nanotubes Modified with Polydopamine and Graphene Quantum Dots as a Photochemical Biosensor for the Ultrasensitive Detection of Glucose. J. Mater. Sci. 2020, 55, 6105–6117. [Google Scholar] [CrossRef]
- Kumar, B.; Sinha, S.K. Enzyme Free Highly Sensitive Glucose Biosensor Based on Ag/Cu2O Nanostructures Deposited on TiO2 Nanotube Arrays. Monatshefte Chem. 2024, 155, 1095–1107. [Google Scholar] [CrossRef]
- Khaliq, N.; Rasheed, M.A.; Cha, G.; Khan, M.; Karim, S.; Schmuki, P.; Ali, G. Development of Non-Enzymatic Cholesterol Bio-Sensor Based on TiO2 Nanotubes Decorated with Cu2O Nanoparticles. Sens. Actuators B Chem. 2020, 302, 127200. [Google Scholar] [CrossRef]
- Kumar, B.; Kumar Sinha, S. Development of a Highly Sensitive Non-Enzymatic Electrochemical Cholesterol Biosensor Based on Ag with Cu2O Nanomaterial Deposited on TiO2 Nanotubes. Measurement 2024, 232, 114707. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, Y.; Wan, L.; Zhao, J.; Yang, J.; Hu, J.; Miao, F.; Zhan, W.; Chen, R.; Liang, F. Catalyst-Free Fabrication of One-Dimensional N-Doped Carbon Coated TiO2 Nanotube Arrays by Template Carbonization of Polydopamine for High Performance Electrochemical Sensors. Appl. Surf. Sci. 2020, 509, 145301. [Google Scholar] [CrossRef]
- Cheng, H.; Hu, C.; Ji, Z.; Ma, W.; Wang, H. A Solid Ionic Lactate Biosensor Using Doped Graphene-like Membrane of Au-EVIMC-Titania Nanotubes-Polyaniline. Biosens. Bioelectron. 2018, 118, 97–101. [Google Scholar] [CrossRef]
- Hung, T.T.Y.; Lin, J.L. A Study on Homocysteine Biosensors Completely Constructed on Anodized Titania Nanotubes. IEEE Sens. Lett. 2017, 1, 1–3. [Google Scholar] [CrossRef]
- Gao, B.; Liang, Z.; Han, D.; Han, F.; Fu, W.; Wang, W.; Liu, Z.; Niu, L. Molecularly Imprinted Photo-Electrochemical Sensor for Hemoglobin Detection Based on Titanium Dioxide Nanotube Arrays Loaded with CdS Quantum Dots. Talanta 2021, 224, 121924. [Google Scholar] [CrossRef]
- Dai, Z.; Yang, L.; Li, Y.; Zhao, C.; Guo, J.; Gao, Z.; Song, Y.-Y. A Portable Dual-Mode Sensor Based on a TiO2 Nanotube Membrane for the Evaluation of Telomerase Activity. Chem. Commun. 2019, 55, 10571–10574. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Ma, C.; Li, L.; Zhang, L.; Yu, J. A Photoelectrochemical Sensor for Hydrogen Sulfide in Cancer Cells Based on the Covalently and in Situ Grafting of CdS Nanoparticles onto TiO2 Nanotubes. J. Electroanal. Chem. 2016, 783, 176–181. [Google Scholar] [CrossRef]
- Alam, A.; Uppal, T.; Islam, M.S.; Misra, M.; Verma, S.C. Polyaniline/Titania Nanotube-Based Biosensor Strip for Sensitive and Specific Electrochemical Detection of SARS-CoV-2. ACS Omega 2023, 8, 45700–45707. [Google Scholar] [CrossRef]
- Smith, Y.R.; Bhattacharyya, D.; Mohanty, S.K.; Misra, M. Anodic Functionalization of Titania Nanotube Arrays for the Electrochemical Detection of Tuberculosis Biomarker Vapors. J. Electrochem. Soc. 2015, 163, B83. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Smith, Y.R.; Mohanty, S.K.; Misra, M. Titania Nanotube Array Sensor for Electrochemical Detection of Four Predominate Tuberculosis Volatile Biomarkers. J. Electrochem. Soc. 2016, 163, B206. [Google Scholar] [CrossRef]
- Yang, L.; Luo, S.; Cai, Q.; Yao, S. A Review on TiO2 Nanotube Arrays: Fabrication, Properties, and Sensing Applications. Chin. Sci. Bull. 2010, 55, 331–338. [Google Scholar] [CrossRef]
- Gulati, K.; Martinez, R.D.O.; Czerwiński, M.; Michalska-Domańska, M. Understanding the Influence of Electrolyte Aging in Electrochemical Anodization of Titanium. Adv. Colloid Interface Sci. 2022, 302, 102615. [Google Scholar] [CrossRef] [PubMed]
- Suhadolnik, L.; Marinko, Ž.; Ponikvar-Svet, M.; Tavčar, G.; Kovač, J.; Čeh, M. Influence of Anodization-Electrolyte Aging on the Photocatalytic Activity of TiO2 Nanotube Arrays. J. Phys. Chem. C 2020, 124, 4073–4080. [Google Scholar] [CrossRef]
- S, A.A.; Raja, D.H. Optical and Morphological Studies of Titania Nanotubes by Varying Anodization Parameters. Next Mater. 2024, 4, 100215. [Google Scholar] [CrossRef]
- Nunes, D.; Fortunato, E.; Martins, R. Flexible Nanostructured TiO2-Based Gas and UV Sensors: A Review. Discov. Mater. 2022, 2, 2. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas Sensors Based on TiO2 Nanostructured Materials for the Detection of Hazardous Gases: A Review. Nano Mater. Sci. 2021, 3, 390–403. [Google Scholar] [CrossRef]
- Santos, J.S.; Fereidooni, M.; Marquez, V.; Arumugam, M.; Tahir, M.; Praserthdam, S.; Praserthdam, P. Single-Step Fabrication of Highly Stable Amorphous TiO2 Nanotubes Arrays (Am-TNTA) for Stimulating Gas-Phase Photoreduction of CO2 to Methane. Chemosphere 2022, 289, 133170. [Google Scholar] [CrossRef]
- Savchuk, T.; Gavrilin, I.; Savitskiy, A.; Dronov, A.; Dronova, D.; Pereverzeva, S.; Tarhanov, A.; Maniecki, T.; Gavrilov, S.; Konstantinova, E. Effect of Thermal Treatment of Symmetric TiO2 Nanotube Arrays in Argon on Photocatalytic CO2 Conversion. Symmetry 2022, 14, 2678. [Google Scholar] [CrossRef]
- Pang, X.; He, D.; Luo, S.; Cai, Q. An Amperometric Glucose Biosensor Fabricated with Pt Nanoparticle-Decorated Carbon Nanotubes/TiO2 Nanotube Arrays Composite. Sens. Actuators B Chem. 2009, 137, 134–138. [Google Scholar] [CrossRef]
- Cardoso, A.G.; Viltres, H.; Ortega, G.A.; Phung, V.; Grewal, R.; Mozaffari, H.; Ahmed, S.R.; Rajabzadeh, A.R.; Srinivasan, S. Electrochemical Sensing of Analytes in Saliva: Challenges, Progress, and Perspectives. TrAC Trends Anal. Chem. 2023, 160, 116965. [Google Scholar] [CrossRef]
- Galstyan, V. Porous TiO2-Based Gas Sensors for Cyber Chemical Systems to Provide Security and Medical Diagnosis. Sensors 2017, 17, 2947. [Google Scholar] [CrossRef]
- Marien, C.B.D.; Cottineau, T.; Robert, D.; Drogui, P. TiO2 Nanotube Arrays: Influence of Tube Length on the Photocatalytic Degradation of Paraquat. Appl. Catal. B Environ. 2016, 194, 1–6. [Google Scholar] [CrossRef]
- Jamil, S.; Nasir, M.; Ali, Y.; Nadeem, S.; Rashid, S.; Javed, M.Y.; Hayat, A. Cr2O3–TiO2-Modified Filter Paper-Based Portable Nanosensors for Optical and Colorimetric Detection of Hydrogen Peroxide. ACS Omega 2021, 6, 23368–23377. [Google Scholar] [CrossRef] [PubMed]
- ISO 13485:2016; Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/59752.html (accessed on 10 June 2025).
- U.S. Food & Drug Administration. In Vitro Diagnostics. Available online: https://www.fda.gov/medical-devices/products-and-medical-procedures/in-vitro-diagnostics (accessed on 10 June 2025).
- Medical Devices|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/human-regulatory-overview/medical-devices (accessed on 10 June 2025).
- Tao, K.F.M.; Moreira, T.d.C.; Jayakody, D.M.P.; Swanepoel, D.W.; Brennan-Jones, C.G.; Coetzee, L.; Eikelboom, R.H. Teleaudiology Hearing Aid Fitting Follow-up Consultations for Adults: Single Blinded Crossover Randomised Control Trial and Cohort Studies. Int. J. Audiol. 2021, 60, S49–S60. [Google Scholar] [CrossRef] [PubMed]
- Szaniawska-Białas, E.; Brudzisz, A.; Nasir, A.; Wierzbicka, E. Recent Advances in Preparation, Modification, and Application of Free-Standing and Flow-Through Anodic TiO2 Nanotube Membranes. Molecules 2024, 29, 5638. [Google Scholar] [CrossRef]
- Sengupta, J.; Hussain, C.M. Graphene-Enhanced Piezoelectric Nanogenerators for Efficient Energy Harvesting. C 2025, 11, 3. [Google Scholar] [CrossRef]
- Mohamed, O.; Al-Othman, A.; Al-Nashash, H.; Tawalbeh, M.; Almomani, F.; Rezakazemi, M. Fabrication of Titanium Dioxide Nanomaterial for Implantable Highly Flexible Composite Bioelectrode for Biosensing Applications. Chemosphere 2021, 273, 129680. [Google Scholar] [CrossRef]
Material Composition | Sensor Type | Target | LOD | Sensitivity | Response Time | Reference |
---|---|---|---|---|---|---|
Pt–Au/TiOx NT | Electrochemical | Glucose | 0.1 mM | 0.08366 µA mM−1 | 3 s | Kang et al. [19] |
Ni–Cu/TiO2 NT | Electrochemical | Glucose | 5 μM | 1590.9 μA mM−1 cm−2 | 5 s | Li et al. [67] |
TiO2 NTs/PDA/N-GQD | Photoelectrochemical | Glucose | 0.015 mM | 13.6 μA mM−1 cm−2 | 1 s | Yang et al. [68] |
Ag-Cu2O@TiO2 NT | Electrochemical | Glucose | 36 µM | 1010.20 μA mM−1 cm−2 | 2 s | Kumar and Sinha [69] |
Cu2O/TiO2 NT | Electrochemical | Cholesterol | 0.05 µM | 6034.04 μAmM−1 cm−2 | 3 s | Khaliq et al. [70] |
Cu2O/TiO2 NT | Electrochemical | Cholesterol | 0.042 mM | 10981.25 μAmM−1 cm−2 | 3 s | Kumar and Sinha [20] |
Ag-Cu2O@ TiO2 NT | Electrochemical | Cholesterol | 0.057 mM | 12140.06 μAmM−1 cm−2 | 3 s | Kumar and Sinha [71] |
Ti/ATiO2 NTs | Electrochemical | Uric Acid | 30 μM | 394 μAmM−1 cm−2 | NA | Lee et al. [21] |
N-doped C/TiO2 NT | Electrochemical | Uric Acid | 0.11 μM | NA | NA | Wang et al. [72] |
CdS/Au/TiO2-NTs Z-Scheme | Photoelectrochemical | Uric Acid | 5.07 nM | 50.67 μAμM−1 cm−2 | NA | Ma et al. [49] |
Au-EVIMC-TiO2 NTs-PANI | Electrochemical | Lactate | 1.65 × 10−7 M | NA | 8 s | Cheng et al. [73] |
TiO2 NT immobilized with D-amino acid oxidase | Electrochemical | Homocysteine | 1.5 μM | 53.4 nA/μM | NA | Hung et al. [74] |
Transparent TiO2 NT arrays | Fluorescent immunoassay | Cardiac Troponin I | 0.1 μg/mL | NA | NA | Farsinezhad et al. [22] |
MIP/CdS/TiO2 NT | Photoelectrochemical | Hemoglobin | 0.53 pg/mL | NA | NA | Gao et al. [75] |
AuNPs/Chitosan-modified TiO2 NT | Electrochemical | PSA | 7.8 ng/mL | NA | NA | Kiziltan et al. [50] |
CdS/TiO2 NT | Electrochemiluminescent | PSA | 0.4 pg/mL | NA | NA | Dai et al. [64] |
TiO2 NT membrane | Colorimetric/Electrochemical | Telomerase | 0.8 HeLa cells | NA | NA | Dai et al. [76] |
TiO2 NT array | Electrochemical | Exosome | 12.6 particles/μL | NA | NA | He et al. [23] |
TiO2 NT/CdS nanoparticles | Photoelectrochemical | H2S | 0.7 nM | NA | NA | Ding et al. [77] |
Co-functionalized TiO2 NTs | Electrochemical | SARS-CoV-2 | 0.7 nM | NA | 30 s | Vadlamani et al. [24] |
PANi-TiO2 NT | Electrochemical | SARS-CoV-2 | 25.59 copies/μL | NA | 30 s | Alam et al. [78] |
Co(OH)2-functionalized TiO2 NTs | Electrochemical | Methyl nicotinate, methyl p-anisate, methyl phenylacetate, o-phenylanisole | ~0.018 ppm | NA | 35 s | Bhattacharyya et al. [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, J.; Hussain, C.M. Advancements in Titanium Dioxide Nanotube-Based Sensors for Medical Diagnostics: A Two-Decade Review. Nanomaterials 2025, 15, 1044. https://doi.org/10.3390/nano15131044
Sengupta J, Hussain CM. Advancements in Titanium Dioxide Nanotube-Based Sensors for Medical Diagnostics: A Two-Decade Review. Nanomaterials. 2025; 15(13):1044. https://doi.org/10.3390/nano15131044
Chicago/Turabian StyleSengupta, Joydip, and Chaudhery Mustansar Hussain. 2025. "Advancements in Titanium Dioxide Nanotube-Based Sensors for Medical Diagnostics: A Two-Decade Review" Nanomaterials 15, no. 13: 1044. https://doi.org/10.3390/nano15131044
APA StyleSengupta, J., & Hussain, C. M. (2025). Advancements in Titanium Dioxide Nanotube-Based Sensors for Medical Diagnostics: A Two-Decade Review. Nanomaterials, 15(13), 1044. https://doi.org/10.3390/nano15131044