Stable Vacancy-Rich Sodium Vanadate as a Cathode for High-Performance Aqueous Zinc-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Section
2.2. Electrode Material Synthesis
2.3. Material Characterizations
2.4. Electrochemical Measurements
2.5. Calculations of Energy Density
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Huang, Y.; Xu, X.; Chen, Z.; Xiao, G.; Zhong, Y.; Wang, X.; Gu, C.; Tu, J. Bulk-to-Surface Co-Modification of Layered Hydrated Vanadate Cathode for Aqueous Zinc Ion Batteries. Energy Environ. Sci. 2024, 17, 4090–4103. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, C.; Li, J.; Gao, X.; Hu, P.; Ye, C.; He, H.; Zhu, J.; Zhang, W.; Chen, R.; et al. Inhibition of Vanadium Cathodes Dissolution in Aqueous Zn-Ion Batteries. Adv. Mater. 2024, 36, 2310645. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Zheng, J.; Chen, X.; Li, R.; Yuan, Z.; Liu, S.; Niu, Y.; An, M.; Zhou, G.; Yamauchi, Y.; et al. Reconfiguring Zn Deposition Dynamics via an Epitaxial Zn2+ Pathway in Profiled Viscose Rayon for Long-Cyclability Zinc-Ion Batteries. Energy Environ. Sci. 2025, 18, 5457–5469. [Google Scholar] [CrossRef]
- Kang, L.; Liu, S.; Zhang, Q.; Zou, J.; Ai, J.; Qiao, D.; Zhong, W.; Liu, Y.; Jun, S.C.; Yamauchi, Y.; et al. Hierarchical Spatial Confinement Unlocking the Storage Limit of MoS2 for Flexible High-Energy Supercapacitors. ACS Nano 2024, 18, 2149–2161. [Google Scholar] [CrossRef]
- Zhao, F.; Li, J.; Chutia, A.; Liu, L.; Kang, L.; Lai, F.; Dong, H.; Gao, X.; Tan, Y.; Liu, T.; et al. Highly Stable Manganese Oxide Cathode Material Enabled by Grotthuss Topochemistry for Aqueous Zinc Ion Batteries. Energy Environ. Sci. 2024, 17, 1497–1508. [Google Scholar] [CrossRef]
- Yang, G.; Liang, Z.; Li, Q.; Li, Y.; Tian, F.; Wang, C. Epitaxial Core-Shell MnFe Prussian Blue Cathode for Highly Stable Aqueous Zinc Batteries. ACS Energy Lett. 2023, 8, 4085–4095. [Google Scholar] [CrossRef]
- Qiu, C.; Huang, H.; Yang, M.; Xue, L.; Zhu, X.; Zhao, Y.; Ni, M.; Chen, T.; Xia, H. Advancements in Layered Cathode Materials for Next-Generation Aqueous Zinc-Ion Batteries: A Comprehensive Review. Energy Storage Mater. 2024, 72, 103736. [Google Scholar] [CrossRef]
- Ye, H.; Zeng, X.; Li, X.; He, K.; Li, Y.; Yuan, Y. Review of Ion Doping and Intercalation Strategies for Advancing Manganese-Based Oxide Cathodes in Aqueous Zinc-Ion Batteries. Nano Energy 2025, 136, 110740. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, J.-C.; Guo, Y.-F.; Wang, P.-F.; Zhu, Y.-R.; Yi, T.-F. Insights on Rational Design and Energy Storage Mechanism of Mn-Based Cathode Materials towards High Performance Aqueous Zinc-Ion Batteries. Coord. Chem. Rev. 2023, 479, 215009. [Google Scholar] [CrossRef]
- Luan, J.; Yuan, H.; Liu, J.; Zhong, C. Recent Advances on Charge Storage Mechanisms and Optimization Strategies of Mn-Based Cathode in Zinc-Manganese Oxides Batteries. Energy Storage Mater. 2024, 66, 103206. [Google Scholar] [CrossRef]
- Shi, H.-Y.; Sun, X. Interlayer Engineering of Layered Cathode Materials for Advanced Zn Storage. Chem 2020, 6, 817–819. [Google Scholar] [CrossRef]
- Dou, X.; Xie, X.; Liang, S.; Fang, G. Low-Current-Density Stability of Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries. Sci. Bull. 2024, 69, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, R.; Wang, M.; Fang, D.; Yi, J. Dual-Defect Modulating Potassium Anchored NH4V4O10 for Stable High-Energy Aqueous Zinc-Ion Batteries. Chem. Eng. J. 2023, 475, 146127. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, S.; Shi, X.; Yang, Y.; Tang, Y.; Lu, B.; Zhou, J. Synergetic Effect of Alkali-Site Substitution and Oxygen Vacancy Boosting Vanadate Cathode for Super-Stable Potassium and Zinc Storage. Adv. Funct. Mater. 2022, 32, 2203819. [Google Scholar] [CrossRef]
- Guo, X.; Fang, G.; Zhang, W.; Zhou, J.; Shan, L.; Wang, L.; Wang, C.; Lin, T.; Tang, Y.; Liang, S. Mechanistic Insights of Zn2⁺ Storage in Sodium Vanadates. Adv. Energy Mater. 2018, 8, 1801819. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.; Chen, W.; Zhao, J.; Wang, K.; Shen, J.; Chen, X.; Lu, X.; Jiao, X.; Liu, Y.; et al. Synergetic Impact of Oxygen and Vanadium Defects Endows NH4V4O10 Cathode with Superior Performances for Aqueous Zinc-Ion Battery. Energy Storage Mater. 2024, 65, 103108. [Google Scholar] [CrossRef]
- Zeng, Y.; Lu, X.F.; Zhang, S.L.; Luan, D.; Li, S.; Lou, X.W. Construction of Co-Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Zn-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 22189–22194. [Google Scholar] [CrossRef]
- Sinha, R.; Xie, X.; Yang, Y.; Li, Y.; Xue, Y.; Wang, P.; Li, Z. Failure Mechanisms and Strategies for Vanadium Oxide-Based Cathode in Aqueous Zinc Batteries. Adv. Mater. 2025, 15, 2404815. [Google Scholar] [CrossRef]
- Roex, E.; Boschini, F.; Delaval, V.; Schrijnemakers, A.; Cloots, R.; Mahmoud, A. Spray-Dried V2O5 as Cathode Material for High-Performance Aqueous Zinc-Ion Batteries. J. Electroanal. Chem. 2023, 929, 117133. [Google Scholar] [CrossRef]
- Ye, J.; Li, P.; Zhang, H.; Song, Z.; Fan, T.; Zhang, W.; Tian, J.; Huang, T.; Qian, Y.; Hou, Z.; et al. Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc-Ion Batteries. Adv. Funct. Mater. 2023, 33, 2305659. [Google Scholar] [CrossRef]
- Wang, D.; Wen, C.; Zhu, G.; Tu, J.; Kang, K.; Qi, Y.; Zhang, B.; Zhou, Z. Modifying V2O5 Structure with Bio-Additive via Thermal Reconfiguration for Enhanced Cathode in Aqueous Zinc Ion Batteries. Chem. Eng. J. 2025, 512, 162448. [Google Scholar] [CrossRef]
- Ren, X.; Sun, M.; Gan, Z.; Sun, Y.; Wang, N.; Hu, L.; Yan, Z.; Jia, C.; Li, Z. Triple Engineering Boosts High-Performance Accordion-like Vanadium Oxide for Practical Aqueous Zinc-Ion Batteries. Chem. Eng. J. 2024, 494, 152994. [Google Scholar] [CrossRef]
- Guo, A.; Wang, Z.; Chen, L.; Liu, W.; Zhang, K.; Cao, L.; Liang, B.; Luo, D. A Comprehensive Review of the Mechanism and Modification Strategies of V2O5 Cathodes for Aqueous Zinc-Ion Batteries. ACS Nano 2024, 18, 27261–27286. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Gao, G. V2O5-Based Cathodes for Aqueous Zinc Ion Batteries: Mechanisms, Preparations, Modifications, and Electrochemistry. Nano Energy 2024, 127, 109691. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, J.; Yang, C.; Lolupiman, K.; Limphirat, W.; Wu, X.; Zhang, X.; Qin, J.; Huang, Y. Highly Stable Aqueous Zn-Ion Batteries Achieved by Suppressing the Active Component Loss in Vanadium-Based Cathode. Adv. Energy Mater. 2024, 15, 2404026. [Google Scholar] [CrossRef]
- Su, C.; Wang, T.; Liang, Z.; Cheng, S.; Jin, C. Efficient Synthesis of LiV2O5 as the Cathode Materials for High Specific Energy Thermal Batteries. Mater. Lett. 2024, 377, 137349. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, M.-X.; He, Z.-H.; Hou, J.-F.; Kong, L.-B. Solvothermal Synthesis of Sea Urchin-like NaxV2O5 Structure for Ultra-High Stability Aqueous Zinc Ion Batteries. J. Electroanal. Chem. 2023, 944, 117665. [Google Scholar] [CrossRef]
- Li, L.; Liu, S.; Liu, W.; Ba, D.; Liu, W.; Gui, Q.; Chen, Y.; Hu, Z.; Li, Y.; Liu, J. Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries. Nano-Micro Lett. 2021, 13, 34. [Google Scholar] [CrossRef]
- Su, Z.-H.; Wang, R.-H.; Huang, J.-H.; Sun, R.; Qin, Z.-X.; Zhang, Y.-F.; Fan, H.-S. Silver Vanadate (Ag0.33V2O5) Nanorods from Ag Intercalated Vanadium Pentoxide for Superior Cathode of Aqueous Zinc-Ion Batteries. Rare Met. 2022, 41, 2844–2852. [Google Scholar] [CrossRef]
- Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y.; et al. Water-Lubricated Intercalation in V2O5·nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries. Adv. Mater. 2017, 30, 1703725. [Google Scholar] [CrossRef]
- Xiao, P.; Xue, L.; Guo, Y.; Hu, L.; Cui, C.; Li, H.; Zhai, T. On-Site Building of a Zn2⁺-Conductive Interfacial Layer via Short-Circuit Energization for Stable Zn Anode. Sci. Bull. 2021, 66, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Fang, G.; Zhou, J.; Wang, L.; Lei, Y.; Wang, C.; Lin, T.; Tang, Y.; Liang, S. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 2018, 51, 579–587. [Google Scholar] [CrossRef]
- Yoo, G.; Koo, B.-R.; An, G. Nano-Sized Split V2O5 with H2O-Intercalated Interfaces as a Stable Cathode for Zinc Ion Batteries without an Aging Process. Chem. Eng. J. 2022, 434, 134738. [Google Scholar] [CrossRef]
- Li, Q.; Yu, N.; Li, L.; Sun, B.; Chen, X.; Wei, F.; Wang, Q.; Sui, Y.; He, J.; Zhang, Z. Co Doped V2O5 Hollow Microsphere as High-Performance Cathode for Aqueous Zinc-Ion Battery. J. Power Sources 2025, 628, 235895. [Google Scholar] [CrossRef]
- Olszewski, W.; Isturiz, I.; Marini, C.; Avila, M.; Okubo, M.; Li, H.; Zhou, H.; Mizokawa, T.; Saini, N.L.; Simonelli, L. Effects of Nanostructuring on the Bond Strength and Disorder in V2O5 Cathode Material for Rechargeable Ion-Batteries. Phys. Chem. Chem. Phys. 2018, 20, 15288–15292. [Google Scholar] [CrossRef]
- Bi, W.; Gao, G.; Wu, G.; Atif, M.; AlSalhi, M.; Cao, G. Sodium Vanadate/PEDOT Nanocables Rich with Oxygen Vacancies for High Energy Conversion Efficiency Zinc Ion Batteries. Energy Storage Mater. 2021, 40, 209–218. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, C.; Tian, M.; Jia, X.; Jahrman, E.P.; Seidler, G.T.; Zhang, S.; Liu, Y.; Zhang, Y.; Meng, C.; et al. Fast and Reversible Zinc Ion Intercalation in Al-Ion Modified Hydrated Vanadate. Nano Energy 2020, 70, 104519. [Google Scholar] [CrossRef]
- Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F. A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode. Nat. Energy 2016, 1, 16119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Qu, Y.; Kong, F.; Zhao, R.; Wang, X. Stable Vacancy-Rich Sodium Vanadate as a Cathode for High-Performance Aqueous Zinc-Ion Batteries. Nanomaterials 2025, 15, 940. https://doi.org/10.3390/nano15120940
Xie Z, Qu Y, Kong F, Zhao R, Wang X. Stable Vacancy-Rich Sodium Vanadate as a Cathode for High-Performance Aqueous Zinc-Ion Batteries. Nanomaterials. 2025; 15(12):940. https://doi.org/10.3390/nano15120940
Chicago/Turabian StyleXie, Zhibo, Yongru Qu, Fuwei Kong, Ruizheng Zhao, and Xianfen Wang. 2025. "Stable Vacancy-Rich Sodium Vanadate as a Cathode for High-Performance Aqueous Zinc-Ion Batteries" Nanomaterials 15, no. 12: 940. https://doi.org/10.3390/nano15120940
APA StyleXie, Z., Qu, Y., Kong, F., Zhao, R., & Wang, X. (2025). Stable Vacancy-Rich Sodium Vanadate as a Cathode for High-Performance Aqueous Zinc-Ion Batteries. Nanomaterials, 15(12), 940. https://doi.org/10.3390/nano15120940