Nanostructured Aerogels for Water Decontamination: Advances, Challenges, and Future Perspectives
Abstract
:1. Introduction
2. Types of Aerogels Used in Water Decontamination
2.1. Silica-Based Aerogels
2.2. Carbon-Based Aerogels
2.3. Biopolymer-Based Aerogels
2.4. Hybrid and Composite Aerogels
3. Mechanisms of Pollutant Removal Using Aerogels
3.1. Photocatalytic Degradation
Type of Aerogel | Pollutant | Removal Rate (%) | Time (min) | Type of Light | Reusability |
---|---|---|---|---|---|
Cellulose/CNT/TiO2 | Rhodamine B Methylene blue | >97 | 110 | UV light | N/A |
3D-cellulose/graphene/carbon nitride | Rhodamine B | 87.3 | N/A | Visible light | 100 cycles |
Agar/carbon dots/graphitic carbon nitride | Amoxicillin | 100 | 45 | Visible light | 6 cycles |
3.2. Oil–Water Separation and Hydrophobic Aerogels
3.3. Electrochemical and Membrane Applications
4. Current Challenges and Limitations in Aerogel Applications
5. Future Directions and Research Gaps
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Madhav, S.; Ahamad, A.; Kumar, A.; Kushawaha, J.; Singh, P.; Mishra, P.K. Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geol. Ecol. Landsc. 2018, 2, 127–136. [Google Scholar] [CrossRef]
- Geographic, N. Freshwater Resources. Available online: https://education.nationalgeographic.org/resource/freshwater-resources/ (accessed on 1 May 2025).
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Mihaiescu, B.; Mihaiescu, D.E.; Hadibarata, T.; Grumezescu, A.M. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers 2024, 16, 709. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.R.; Xu, X.C. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Env. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Ahamad, A.; Madhav, S.; Singh, A.K.; Kumar, A.; Singh, P. Types of Water Pollutants: Conventional and Emerging. In Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors; Pooja, D., Kumar, P., Singh, P., Patil, S., Eds.; Springer: Singapore, 2020; pp. 21–41. [Google Scholar] [CrossRef]
- Alotaibi, B.A.; Baig, M.B.; Najim, M.M.M.; Shah, A.A.; Alamri, Y.A. Water Scarcity Management to Ensure Food Scarcity through Sustainable Water Resources Management in Saudi Arabia. Sustainability 2023, 15, 10648. [Google Scholar] [CrossRef]
- Sharma, A.; Pandit, P.P.; Chopade, R.L.; Nagar, V.; Aseri, V.; Singh, A.; Awasthi, K.K.; Awasthi, G.; Sankhla, M.S. Eradication of Microplastics in Wastewater Treatment: Overview. Biointerface Res. Appl. Chem. 2023, 13, 223. [Google Scholar] [CrossRef]
- Mittal, T.; Kant, R. Functional Nanohybrid and Nanocomposite Coatings for Sustainable Environmental Remediation. Lett. Appl. NanoBioScience 2024, 13, 181. [Google Scholar] [CrossRef]
- Pakharuddin, N.H.; Fazly, M.N.; Ahmad Sukari, S.H.; Tho, K.; Zamri, W.F.H. Water treatment process using conventional and advanced methods: A comparative study of Malaysia and selected countries. In Proceedings of the 4th International Conference on Science and Technology Applications in Climate Change, Selangor, Malaysia, 1–2 July 2021. [Google Scholar]
- Dhangar, K.; Kumar, M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef]
- Arshad, A.; Iqbal, J.; Mansoor, Q. Graphene/Fe3O4 nanocomposite: Solar light driven Fenton like reaction for decontamination of water and inhibition of bacterial growth. Appl. Surf. Sci. 2019, 474, 57–65. [Google Scholar] [CrossRef]
- Maftouh, A.; El Fatni, O.; El Hajjaji, S.; Jawish, M.W.; Sillanpää, M. Comparative Review of Different Adsorption Techniques Used in Heavy Metals Removal in Water. Biointerface Res. Appl. Chem. 2023, 13, 397. [Google Scholar] [CrossRef]
- Pratap, J.K.; Krishnan, K. A Systematic Review on Microbial Bioremediation and Nanobioremdiation of Toxic Heavy Metals Pollution. Lett. Appl. NanoBioScience 2024, 13, 156. [Google Scholar] [CrossRef]
- Younas, F.; Mustafa, A.; Farooqi, Z.U.R.; Wang, X.K.; Younas, S.; Mohy-Ud-Din, W.; Hameed, M.A.; Abrar, M.M.; Maitlo, A.A.; Noreen, S.; et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Ganesamoorthy, R.; Vadivel, V.K.; Kumar, R.; Kushwaha, O.S.; Mamane, H. Aerogels for water treatment: A review. J. Clean. Prod. 2021, 329, 129713. [Google Scholar] [CrossRef]
- Liu, Y.L.; Jin, C.; Yang, Z.Z.; Wu, G.M.; Liu, G.F.; Kong, Z.W. Recent advances in lignin-based porous materials for pollutants removal from wastewater. Int. J. Biol. Macromol. 2021, 187, 880–891. [Google Scholar] [CrossRef]
- Niu, X.Q.; Si, J.H.; Chen, B.Y.; Wang, Q.T.; Zeng, S.; Cui, Z.X. Preparation of Bioaerogel from Iron-Rich Microalgae for the Removal of Water Pollutants. Processes 2024, 12, 1313. [Google Scholar] [CrossRef]
- Nita, L.E.; Ghilan, A.; Rusu, A.G.; Neamtu, I.; Chiriac, A.P. New Trends in Bio-Based Aerogels. Pharmaceutics 2020, 12, 449. [Google Scholar] [CrossRef]
- Linhares, T.; de Amorim, M.T.P.; Duraes, L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications. J. Mater. Chem. A 2019, 7, 22768–22802. [Google Scholar] [CrossRef]
- Mazrouei-Sebdani, Z.; Naeimirad, M.; Peterek, S.; Begum, H.; Galmarini, S.; Pursche, F.; Baskin, E.; Zhao, S.Y.; Gries, T.; Malfait, W.J. Multiple assembly strategies for silica aerogel-fiber combinations—A review. Mater. Des. 2022, 223, 111228. [Google Scholar] [CrossRef]
- Lin, J.M.; Li, G.Z.; Liu, W.; Qiu, R.X.; Wei, H.Y.; Zong, K.; Cai, X.K. A review of recent progress on the silica aerogel monoliths: Synthesis, reinforcement, and applications. J. Mater. Sci. 2021, 56, 10812–10833. [Google Scholar] [CrossRef]
- Rostamitabar, M.; Subrahmanyam, R.; Gurikov, P.; Seide, G.; Jockenhoevel, S.; Ghazanfari, S. Cellulose aerogel micro fibers for drug delivery applications. Mat. Sci. Eng. C-Mater. 2021, 127, 112196. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, Z.; Namazi, H. Nontoxic double-network polymeric hybrid aerogel functionalized with reduced graphene oxide: Preparation, characterization, and evaluation as drug delivery agent. J. Polym. Res. 2022, 29, 37. [Google Scholar] [CrossRef]
- Okutucu, B. The medical applications of biobased aerogels: ‘Natural aerogels for medical usage’. Med. Devices Sens. 2020, 4, e10168. [Google Scholar] [CrossRef]
- Ayazi, H.; Akhavan, O.; Raoufi, M.; Varshochian, R.; Motlagh, N.S.H.; Atyabi, F. Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloid. Surf. B 2020, 186, 110712. [Google Scholar] [CrossRef]
- Croitoru, G.-A.; Pîrvulescu, D.-C.; Niculescu, A.-G.; Rădulescu, M.; Grumezescu, A.M.; Nicolae, C.-L. Advancements in Aerogel Technology for Antimicrobial Therapy: A Review. Nanomaterials 2024, 14, 1110. [Google Scholar] [CrossRef]
- Sani, N.S.; Malek, N. Hydroxyapatite Modified Silica Aerogel Nanoparticles: In Vitro Cell Migration Analysis. Biointerface Res. Appl. Chem. 2023, 13, 373. [Google Scholar]
- He, S.; Wu, X.Y.; Zhang, X.Q.; Sun, J.W.; Tian, F.L.; Guo, S.P.; Du, H.P.; Li, P.; Huang, Y.J. Preparation and properties of thermal insulation coating based on silica aerogel. Energ. Build. 2023, 298, 113556. [Google Scholar] [CrossRef]
- Mercan, D.-A.; Tudorache, D.-I.; Niculescu, A.-G.; Mogoantă, L.; Mogoşanu, G.D.; Bîrcă, A.C.; Vasile, B.Ș.; Hudiță, A.; Voinea, I.C.; Stan, M.S.; et al. Antimicrobial Coatings Based on Hybrid Iron Oxide Nanoparticles. Nanomaterials 2025, 15, 637. [Google Scholar] [CrossRef] [PubMed]
- Lamy-Mendes, A.; Lopes, D.; Girao, A.V.; Silva, R.F.; Malfait, W.J.; Duraes, L. Carbon Nanostructures-Silica Aerogel Composites for Adsorption of Organic Pollutants. Toxics 2023, 11, 232. [Google Scholar] [CrossRef]
- Ahmad, A.; Kamaruddin, M.A.; Khalil, H.P.S.A.; Yahya, E.B.; Muhammad, S.; Rizal, S.; Ahmad, M.I.; Surya, I.; Abdullah, C.K. Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal. Gels 2023, 9, 416. [Google Scholar] [CrossRef]
- Kumar, A.S.K.; Warchol, J.; Matusik, J.; Tseng, W.L.; Rajesh, N.; Bajda, T. Heavy metal and organic dye removal via a hybrid porous hexagonal boron nitride-based magnetic aerogel. Npj Clean. Water 2022, 5, 24. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Uebe, J.; Karasu, A.U.; Anne, O. Investigation of Cellulose-Based Aerogels for Oil Spill Removal. Water Air Soil. Poll. 2020, 231, 424. [Google Scholar] [CrossRef]
- Muhammad, S.; Albadn, Y.M.; Yahya, E.B.; Nasr, S.; Khalil, H.P.S.A.; Ahmad, M.I.; Kamaruddin, M.A. Trends in enhancing the efficiency of biomass-based aerogels for oil spill clean-up. Giant 2024, 18, 100249. [Google Scholar] [CrossRef]
- Wu, W.Q.; Du, M.; Shi, H.K.; Zheng, Q.G.; Bai, Z.A. Application of graphene aerogels in oil spill recovery: A review. Sci. Total Environ. 2023, 856, 159107. [Google Scholar] [CrossRef]
- Ren, Y.M.; Xu, Q.; Zhang, J.M.; Yang, H.X.; Wang, B.; Yang, D.Y.; Hu, J.H.; Liu, Z.M. Functionalization of Biomass Carbonaceous Aerogels: Selective Preparation of MnO @CA Composites for Supercapacitors. ACS Appl. Mater. Inter. 2014, 6, 9689–9697. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, D.; Qian, X.Z.; Zhao, C.J.; Xu, Y.L. A novel nano structured LiFePO4/C composite as cathode for Li-ion batteries. J. Power Sources 2014, 249, 431–434. [Google Scholar] [CrossRef]
- Gu, P.Z.; Lu, L.L.; Yang, X.; Hu, Z.Y.; Zhang, X.Y.; Sun, Z.J.; Liang, X.; Liu, M.X.; Sun, Q.; Huang, J.; et al. Highly Stretchable Semiconducting Aerogel Films for High-Performance Flexible Electronics. Adv. Funct. Mater. 2024, 34, 2400589. [Google Scholar] [CrossRef]
- Wang, B.L.; Li, G.Y.; Xu, L.; Liao, J.H.; Zhang, X.T. Nanoporous Boron Nitride Aerogel Film and Its Smart Composite with Phase Change Materials. ACS Nano 2020, 14, 16590–16599. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Zheng, Y.Y.; Xu, Y.M.; Zheng, Z.K.; Chen, X.D.; Liu, W. Versatile Aerogels for Sensors. Small 2019, 15, 1902826. [Google Scholar] [CrossRef]
- Ding, Y.C.; Xu, T.; Onyilagha, O.; Fong, H.; Zhu, Z.T. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Appl. Mater. Inter. 2019, 11, 6685–6704. [Google Scholar] [CrossRef]
- Lyu, W.; Li, J.Q.; Zheng, L.L.; Liu, H.; Chen, J.; Zhang, W.Y.; Liao, Y.Z. Fabrication of 3D compressible polyaniline/cellulose nanofiber aerogel for highly efficient removal of organic pollutants and its environmental-friendly regeneration by peroxydisulfate process. Chem. Eng. J. 2021, 414, 128931. [Google Scholar] [CrossRef]
- He, J.; Zhao, H.Y.; Li, X.L.; Su, D.; Zhang, F.R.; Ji, H.M.; Liu, R. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J. Hazard. Mater. 2018, 346, 199–207. [Google Scholar] [CrossRef]
- Prasanna, V.L.; Mamane, H.; Vadivel, V.K.; Avisar, D. Ethanol-activated granular aerogel as efficient adsorbent for persistent organic pollutants from real leachate and hospital wastewater. J. Hazard. Mater. 2020, 384, 121396. [Google Scholar] [CrossRef]
- Almeida, C.; Guerrero, V. Aerogels for Contaminant Removal from Water. In Aerogels: Properties and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2022. [Google Scholar]
- Niculescu, A.-G.; Mihaiescu, B.; Bîrcă, A.C.; Moroșan, A.; Munteanu, O.M.; Vasile, B.Ș.; Hadibarata, T.; Istrati, D.; Mihaiescu, D.E.; Grumezescu, A.M. Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination. Gels 2024, 10, 394. [Google Scholar] [CrossRef] [PubMed]
- Gorgolis, G.; Kotsidi, M.; Paterakis, G.; Koutroumanis, N.; Tsakonas, C.; Galiotis, C. Graphene aerogels as efficient adsorbers of water pollutants and their effect of drying methods. Sci. Rep. 2024, 14, 8029. [Google Scholar] [CrossRef] [PubMed]
- Kistler, S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Meti, P.; Mahadik, D.B.; Lee, K.Y.; Wang, Q.; Kanamori, K.; Gong, Y.D.; Park, H.H. Overview of organic-inorganic hybrid silica aerogels: Progress and perspectives. Mater. Des. 2022, 222, 111091. [Google Scholar] [CrossRef]
- Liu, J.F.; Yang, H.; Liu, K.Q.; Miao, R.; Fang, Y. Gel-Emulsion-Templated Polymeric Aerogels for Water Treatment by Organic Liquid Removal and Solar Vapor Generation. Chemsuschem 2020, 13, 749–755. [Google Scholar] [CrossRef]
- Maleki, H. Recent advances in aerogels for environmental remediation applications: A review. Chem. Eng. J. 2016, 300, 98–118. [Google Scholar] [CrossRef]
- Dorcheh, A.S.; Abbasi, M.H. Silica aerogel; synthesis, properties and characterization. J. Mater. Process Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Franco, P.; Cardea, S.; Tabernero, A.; De Marco, I. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules 2021, 26, 4440. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.G.; Tudorache, D.I.; Bocioaga, M.; Mihaiescu, D.E.; Hadibarata, T.; Grumezescu, A.M. An Updated Overview of Silica Aerogel-Based Nanomaterials. Nanomaterials 2024, 14, 469. [Google Scholar] [CrossRef] [PubMed]
- Idumah, C.I.; Ezika, A.C.; Okpechi, V.U. Emerging trends in polymer aerogel nanoarchitectures, surfaces, interfaces and applications. Surf. Interfaces 2021, 25, 101258. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Sajid, M.; Khan, S.; Bilal, M. Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects. Sep. Purif. Technol. 2022, 291, 120923. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, S.; Sheikh, J.N. Silica centered aerogels as advanced functional material and their applications: A review. J. Non-Cryst. Solids 2023, 611, 122322. [Google Scholar] [CrossRef]
- Chen, Y.M.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.H.; Duan, G.G.; Jiang, S.H.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater. 2021, 33, 2005569. [Google Scholar] [CrossRef]
- Wu, K.D.; Dong, W.; Pan, Y.K.; Cao, J.X.; Zhang, Y.Y.; Long, D.H. Lightweight and Flexible Phenolic Aerogels with Three-Dimensional Foam Reinforcement for Acoustic and Thermal Insulation. Ind. Eng. Chem. Res. 2021, 60, 1241–1249. [Google Scholar] [CrossRef]
- da Cunha, J.P.; Neves, P.; Lopes, M.I. On the reconstruction of Cherenkov rings from aerogel radiators. Nucl. Instrum. Methods A 2000, 452, 401–421. [Google Scholar] [CrossRef]
- Maleki, H.; Duraes, L.; Portugal, A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids 2014, 385, 55–74. [Google Scholar] [CrossRef]
- Kaya, G.G.; Deveci, H. Synergistic effects of silica aerogels/xerogels on properties of polymer composites: A review. J. Ind. Eng. Chem. 2020, 89, 13–27. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Pedraza, F.; Parale, V.G.; Park, H.H. Organically modified silica aerogel with different functional silylating agents and effect on their physico-chemical properties. J. Non-Cryst. Solids 2016, 453, 164–171. [Google Scholar] [CrossRef]
- Huang, D.M.; Guo, C.N.; Zhang, M.Z.; Shi, L. Characteristics of nanoporous silica aerogel under high temperature from 950 °C to 1200 °C. Mater. Des. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Hu, S.C.; Shi, F.; Liu, J.X.; Yu, L.; Liu, S.H. Magnetic mesoporous iron oxide/silica composite aerogels with high adsorption ability for organic pollutant removal. J. Porous Mat. 2016, 23, 655–661. [Google Scholar] [CrossRef]
- Li, Y.C.; Zhou, M.Q.; Waterhouse, G.I.N.; Sun, J.C.; Shi, W.J.; Ai, S.Y. Efficient removal of cadmium ions from water by adsorption on a magnetic carbon aerogel. Environ. Sci. Pollut. R 2021, 28, 5149–5157. [Google Scholar] [CrossRef]
- Ghahremani, P.; Vakili, M.H.; Nezamzadeh-Ejhieh, A. Optimization of Pb(II) removal by a novel modified silica aerogel using Quince seed mucilage with response surface methodology. J. Environ. Chem. Eng. 2021, 9, 106648. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jia, S.K.; Yuan, X.Q.; Ding, L.; Ai, T.T.; Yuan, K.Z.; Wang, W.; Magagnin, L.; Jiang, Z.Y. High-efficiency removal of Pb (II) and Cu (II) by amidoxime functionalized silica aerogels: Preparation, adsorption mechanisms and environmental impacts analysis. Sep. Purif. Technol. 2024, 335, 126079. [Google Scholar] [CrossRef]
- Cheng, L.; Sun, X.T.; Li, Q.; Yang, J.; Wang, R.H.; Sun, X.Y.; Wei, L. Construction of C8/threonine-functionalized mesoporous silica aerogel based on mixed-mode and its adsorption properties for both anionic and cationic dyes. Powder Technol. 2024, 434, 119360. [Google Scholar] [CrossRef]
- Gupta, S.; Prajapati, A.; Kumar, A.; Acharya, S. Synthesis of silica aerogel and its application for removal of crystal violet dye by adsorption. Watershed Ecol. Environ. 2023, 5, 241–254. [Google Scholar] [CrossRef]
- Ruan, C.C.; Chen, G.Y.; Ma, Y.S.; Du, C.H.; He, C.X.; Liu, X.Y.; Jin, X.; Chen, Q.L.; He, S.; Huang, Y.J. PVA-assisted CNCs/SiO2 composite aerogel for efficient sorption of ciprofloxacin. J. Colloid. Interf. Sci. 2023, 630, 544–555. [Google Scholar] [CrossRef]
- Mariana, M.; Khalil, H.P.S.A.; Mistar, E.M.; Yahya, E.B.; Alfatah, T.; Danish, M.; Amayreh, M. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J. Water Process Eng. 2021, 43, 102221. [Google Scholar] [CrossRef]
- Muhammad, S.; Yahya, E.B.; Khalil, H.P.S.A.; Marwan, M.; Albadn, Y.M. Recent Advances in Carbon and Activated Carbon Nanostructured Aerogels Prepared from Agricultural Wastes for Wastewater Treatment Applications. Agriculture 2023, 13, 208. [Google Scholar] [CrossRef]
- Li, H.M.; Li, J.H.; Thomas, A.; Liao, Y.Z. Ultra-High Surface Area Nitrogen-Doped Carbon Aerogels Derived From a Schiff-Base Porous Organic Polymer Aerogel for CO Storage and Supercapacitors. Adv. Funct. Mater. 2019, 29, 1904785. [Google Scholar] [CrossRef]
- Shen, G.Z.; Xu, Y.W.; Liu, B. Preparation and adsorption properties of magnetic mesoporous Fe3C/carbon aerogel for arsenic removal from water. Desalin Water Treat. 2016, 57, 24467–24475. [Google Scholar] [CrossRef]
- Smith, D.M.; Hamwi, B.; Rogers, R.J.r. Carbon nanomaterial-based aerogels for improved removal of copper(II), zinc(II), and lead(II) ions from water. Environ. Sci.-Adv. 2022, 1, 208–215. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J. Energy Storage 2020, 27, 101038. [Google Scholar] [CrossRef]
- Nawaz, M.; Khan, A.A.; Hussain, A.; Jang, J.; Jung, H.Y.; Lee, D.S. Reduced graphene oxide-TiO2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole. Chemosphere 2020, 261, 127702. [Google Scholar] [CrossRef]
- Bessa, A.; Henriques, B.; Gonçalves, G.; Irurueta, G.; Pereira, E.; Marques, P.A.A.P. Graphene oxide/polyethyleneimine aerogel for high-performance mercury sorption from natural waters. Chem. Eng. J. 2020, 398, 125587. [Google Scholar] [CrossRef]
- You, N.; Wang, X.F.; Li, J.Y.; Fan, H.T.; Shen, H.; Zhang, Q. Synergistic removal of arsanilic acid using adsorption and magnetic separation technique based on Fe3O4@ graphene nanocomposite. J. Ind. Eng. Chem. 2019, 70, 346–354. [Google Scholar] [CrossRef]
- Garg, S.; Singh, S.; Shehata, N.; Sharma, H.; Samuel, J.; Khan, N.A.; Ramamurthy, P.C.; Singh, J.; Mubashir, M.; Bokhari, A.; et al. Aerogels in wastewater treatment: A review. J. Taiwan Inst. Chem. E 2025, 166, 105299. [Google Scholar] [CrossRef]
- Romero-Montero, A.; Valencia-Bermúdez, J.L.; Rosas-Meléndez, S.A.; Núñez-Tapia, I.; Piña-Barba, M.C.; Leyva-Gómez, G.; Del Prado-Audelo, M.L. Biopolymeric Fibrous Aerogels: The Sustainable Alternative for Water Remediation. Polymers 2023, 15, 262. [Google Scholar] [CrossRef]
- Lv, Y.C.; Liang, Z.X.; Li, Y.H.; Chen, Y.C.; Liu, K.Y.; Yang, G.F.; Liu, Y.F.; Lin, C.X.; Ye, X.X.; Shi, Y.Q.; et al. Efficient adsorption of diclofenac sodium in water by a novel functionalized cellulose aerogel. Environ. Res. 2021, 194, 110652. [Google Scholar] [CrossRef] [PubMed]
- Marotta, A.; Luzzi, E.; de Luna, M.S.; Aprea, P.; Ambrogi, V.; Filippone, G. Chitosan/Zeolite Composite Aerogels for a Fast and Effective Removal of Both Anionic and Cationic Dyes from Water. Polymers 2021, 13, 1691. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, P.; Raptopoulos, G.; Leontaridou, F.; Papastergiou, M.; Sakellari, A.; Karavoltsos, S. Evaluation of Polyurea-Crosslinked Alginate Aerogels for Seawater Decontamination. Gels 2021, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.Z.; Zhang, Y.F.; Zhang, L.S.; Miao, Y.E.; Fan, W.; Liu, T.X. Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications. Materials 2015, 8, 6806–6848. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, J.H.; Sun, P.Z.; Liu, J.S.; Ji, Y.; Nakada, N.; Qiao, Z.; Tanaka, H.; Yang, Y.K. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Sci. Total Environ. 2018, 627, 1253–1263. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Soin, N.; Roy, S.S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. Rsc. Adv. 2014, 4, 3823–3851. [Google Scholar] [CrossRef]
- Nawaz, M.; Moztahida, M.; Kim, J.; Shahzad, A.; Jang, J.; Miran, W.; Lee, D.S. Photodegradation of microcystin-LR using graphene-TiO2/sodium alginate aerogels. Carbohyd. Polym. 2018, 199, 109–118. [Google Scholar] [CrossRef]
- Dai, J.G.; Tian, Q.F.; Sun, Q.Q.; Wei, W.K.; Zhuang, J.D.; Liu, M.Z.; Cao, Z.; Xie, W.Z.; Fan, M.Z. TiO2-alginate composite aerogels as novel oil/water separation and wastewater remediation filters. Compos. Part B-Eng. 2019, 160, 480–487. [Google Scholar] [CrossRef]
- Yao, T.J.; Qi, Y.; Mei, Y.Q.; Yang, Y.; Aleisa, R.; Tong, X.; Wu, J. One-step preparation of reduced graphene oxide aerogel loaded with mesoporous copper ferrite nanocubes: A highly efficient catalyst in microwave-assisted Fenton reaction. J. Hazard. Mater. 2019, 378, 120712. [Google Scholar] [CrossRef]
- Liu, J.T.; Ge, X.; Ye, X.X.; Wang, G.Z.; Zhang, H.M.; Zhou, H.J.; Zhang, Y.X.; Zhao, H.J. 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. J. Mater. Chem. A 2016, 4, 1970–1979. [Google Scholar] [CrossRef]
- Li, Z.J.; Sun, Y.K.; Xing, J.; Meng, A. Fast Removal of Methylene Blue by Fe3O4 Magnetic Nanoparticles and Their Cycling Property. J. Nanosci. Nanotechnol. 2019, 19, 2116–2123. [Google Scholar] [CrossRef]
- Arabkhani, P.; Asfaram, A. Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J. Hazard. Mater. 2020, 384, 121394. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.Y.; Wen, F.B.; Chen, J.M.; Chen, W.L.; Huang, Y.W.; Wang, B. Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution. Polymer 2021, 213, 123316. [Google Scholar] [CrossRef]
- Mariana, M.; Khalil, H.P.S.A.; Yahya, E.B.; Olaiya, N.G.; Alfatah, T.; Suriani, A.B.; Mohamed, A. Recent trends and future prospects of nanostructured aerogels in water treatment applications. J. Water Process Eng. 2022, 45, 102481. [Google Scholar] [CrossRef]
- Pereira, S.K.; Kini, S.; Prabhu, B.; Jeppu, G.P. A simplified modeling procedure for adsorption at varying pH conditions using the modified Langmuir-Freundlich isotherm. Appl. Water Sci. 2023, 13, 29. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Yang, H.; Sun, J.F.; Zhang, Y.; Xia, S.B. Enhanced Adsorption of Rhodamine B on Modified Oil-Based Drill Cutting Ash: Characterization, Adsorption Kinetics, and Adsorption Isotherm. ACS Omega 2021, 6, 17086–17094. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.; Irfan, M.I.; Hassan, M.N.U.; Sher, M.; Alhazmi, H.A.; Qramish, A.N.; Amin, H.M.A.; Qadir, R.; Abbas, A. Maleated Hydroxyethyl Cellulose for the Efficient Removal of Cd(II) Ions from an Aqueous Solution: Isothermal, Kinetic and Regeneration Studies. Water Air Soil. Poll. 2024, 235, 536. [Google Scholar] [CrossRef]
- Sukmana, H.; Bellahsen, N.; Pantoja, F.; Hodur, C. Adsorption and coagulation in wastewater treatment—Review. Progress. Agric. Eng. Sci. 2021, 17, 49–68. [Google Scholar] [CrossRef]
- Chen, J.D.; Liang, Q.W.; Ploychompoo, S.; Luo, H.J. Functional rGO aerogel as a potential adsorbent for removing hazardous hexavalent chromium: Adsorption performance and mechanism. Environ. Sci. Pollut. R 2020, 27, 10715–10728. [Google Scholar] [CrossRef]
- Geng, B.Y.; Xu, Z.Y.; Liang, P.; Zhang, J.; Christie, P.; Liu, H.Z.; Wu, S.C.; Liu, X.H. Three-dimensional macroscopic aminosilylated nanocellulose aerogels as sustainable bio-adsorbents for the effective removal of heavy metal ions. Int. J. Biol. Macromol. 2021, 190, 170–177. [Google Scholar] [CrossRef]
- Xu, J.; Cao, Z.; Zhang, Y.L.; Yuan, Z.L.; Lou, Z.M.; Xu, X.H.; Wang, X.K. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Z.Q.; Zhou, X.H.; Li, S.K. Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel. Appl. Sci. 2019, 9, 547. [Google Scholar] [CrossRef]
- He, S.; Li, K.W.; Du, C.H.; Li, Z.Q.; Huang, Y.J.; Cao, C.Y. Temperature and pH dual response flexible silica aerogel with switchable wettability for selective oil/water separation. Mar. Pollut. Bull. 2024, 199, 116011. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhu, C.Q.; Liu, F.Q.; Yuan, Y.; Wu, H.D.; Li, A.M. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. Sci. Total Environ. 2019, 646, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Feng, D.; Shang, J.W.; Nasen, B.; Jiang, T.; Liu, Y.M.; Hou, S.Y. Green composite aerogel based on citrus peel/chitosan/bentonite for sustainable removal Cu(II) from water matrices. Sci. Rep. 2023, 13, 15443. [Google Scholar] [CrossRef]
- Che, N.J.; Liu, N.; Li, Y.H.; Li, C.; Liu, Y.L.; Li, C.L. Three dimensional BC/rGA aerogel: Preparation, characterization, and adsorption of Cr(VI). Biochar 2022, 4, 65. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef]
- Xu, R.Z.; Wei, G.Y.; Xie, Z.M.; Diao, S.J.; Wen, J.F.; Tang, T.; Jiang, L.; Li, M.; Hu, G.H. V2C MXene-modified g-C3N4 for enhanced visible-light photocatalytic activity. J. Alloy Compd. 2024, 970, 172656. [Google Scholar] [CrossRef]
- Gallegos-Cerda, S.D.; Hernández-Varela, J.D.; Pérez, J.J.C.; Huerta-Aguilar, C.A.; Victoriano, L.G.; Arredondo-Tamayo, B.; Hernández, O.R. Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO2 nanoparticles for the degradation of organic dyes. Carbohyd. Polym. 2024, 324, 121476. [Google Scholar] [CrossRef]
- Liu, S.; Xu, T.; Zhu, L.Y.; Liu, K.F.; Ji, X.X.; Yuan, Z.H.; Si, C.L. Highly compressible ultra-light 3D cellulose/graphene/carbon nitride aerogel for enhanced photocatalytic activity. Chem. Eng. J. 2025, 503, 158564. [Google Scholar] [CrossRef]
- Yang, X.C.; Zhao, J.T. Aerogel for Highly Efficient Photocatalytic Degradation. Gels 2024, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Soo, J.Z.; Chai, L.C.; Ang, B.C.; Ong, B.H. Enhancing the Antibacterial Performance of Titanium Dioxide Nanofibers by Coating with Silver Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 5743–5751. [Google Scholar] [CrossRef]
- Tiryaki, E.; Özarslan, A.C.; Yücel, S.; Correa-Duarte, M.A. Plasmon-Sensitized Silica-Titanium Aerogels as Potential Photocatalysts for Organic Pollutants and Bacterial Strains. ACS Omega 2023, 8, 33857–33869. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.X.; Peng, L.; Fu, W.X.; Zhang, J.L.; Li, Z.B. Flexible superhydrophobic polysiloxane aerogels for oil-water separation via one-pot synthesis in supercritical CO2. RSC Adv. 2015, 5, 76346–76351. [Google Scholar] [CrossRef]
- Li, J.H.; Liu, Q.H.; He, J.M.; Zhao, Y.; Mu, L.H.; Liu, X.F.; Zhang, Y.; Sun, C.L.; Zhang, N.; Qu, M.N. A review of superwetting aerogel-based oil-water separation materials. Mater. Today Sustain. 2024, 26, 100741. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, H.X.; Li, H.K.; Yue, X.D.; Jiang, L.H.; Shi, F.; Liu, J.X. Ultralight biomass-based carbon aerogel with hierarchical pore structure fabricated using unidirectional freeze casting and potassium hydroxide activation. Mater. Lett. 2022, 317, 132081. [Google Scholar] [CrossRef]
- Iskandar, M.A.; Yahya, E.B.; Khalil, H.P.S.A.; Rahman, A.A.; Ismail, M.A. Recent Progress in Modification Strategies of Nanocellulose-Based Aerogels for Oil Absorption Application. Polymers 2022, 14, 849. [Google Scholar] [CrossRef]
- Ma, Z.H.; Han, Y.; Xing, X.Y.; Zhu, H.W.; Wang, Q.Y.; Wang, X. Highly efficient oil-water separation of superhydrophobic cellulose II aerogel based on dissolution and regeneration of cotton in lithium bromide system. J. Mol. Liq. 2022, 367, 120543. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, C.X.; Dong, H. Oil/water separation with hydrophobic/oleophilic silica-shelled cellulose aerogels. Geoenergy Sci. Eng. 2024, 240, 213043. [Google Scholar] [CrossRef]
- Romero-Montero, A.; Rosas-Melendez, S.A.; Valencia-Bermúdez, J.L.; Nuñez-Tapia, I.; Piña-Barba, M.C.; Melgoza-Ramírez, L.J.; Leyva-Gómez, G.; Del Prado-Audelo, M.L. Oil/water separation by super-hydrophobic wastepaper cellulose-candelilla wax cryogel: A circular material-based alternative. Front. Mater. 2023, 10, 1308094. [Google Scholar] [CrossRef]
- Aytekin, M.; Haykiri-Acma, H.; Yaman, S. Hydrophobic and oleophilic carbon fiber aerogel for oil/water separation. Biomass Convers. Bior 2024, 14, 18079–18092. [Google Scholar] [CrossRef]
- Le, D.; Pham, N.; Le, K. Capacitive deionization (CDI) for desalisation using carbon aerogel electrodes. VNUHCM J. Sci. Technol. Dev. 2016, 19, 155–164. [Google Scholar] [CrossRef]
- Qin, M.; Deshmukh, A.; Epsztein, R.; Patel, S.K.; Owoseni, O.M.; Walker, W.S.; Elimelech, M. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis (vol 455, pg 100, 2019). Desalination 2019, 461, 55. [Google Scholar] [CrossRef]
- Beke, M.; Velempini, T.; Prabakaran, E.; Pillay, K. Preparation of carbon-aerogel polypyrrole composite for desalination by hybrid capacitive desalination method. Arab. J. Chem. 2023, 16, 104412. [Google Scholar] [CrossRef]
- Cao, Z.L.; Zhang, C.; Yang, Z.X.; Qin, Q.; Zhang, Z.H.; Wang, X.D.; Shen, J. Preparation of Carbon Aerogel Electrode for Electrosorption of Copper Ions in Aqueous Solution. Materials 2019, 12, 1864. [Google Scholar] [CrossRef] [PubMed]
- Svagan, A.J.; Jensen, P.; Dvinskikh, S.V.; Furó, I.; Berglund, L.A. Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying. J. Mater. Chem. 2010, 20, 6646–6654. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, N.T.; Nguyen, V.V.; Nguyen, A.H.; Hoang Tran, B.D.; Vo, T.K.; Truong, D.T.; Doan, T.L.H.; Huynh, L.T.N.; Tran, T.N.; et al. Tailoring hierarchical structures in cellulose carbon aerogels from sugarcane bagasse using different crosslinking agents for enhancing electrochemical desalination capability. Chemosphere 2024, 355, 141748. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mehejabin, F.; Momtahin, A.; Tasannum, N.; Faria, N.T.; Mofijur, M.; Hoang, A.T.; Vo, D.V.N.; Mahlia, T.M. Strategies to improve membrane performance in wastewater treatment. Chemosphere 2022, 306, 135527. [Google Scholar] [CrossRef]
- García-Ávila, F.; Zambrano-Jaramillo, A.; Velecela-Garay, C.; Coronel-Sánchez, K.; Valdiviezo-Gonzalez, L. Effectiveness of membrane technologies in removing emerging contaminants from wastewater: Reverse Osmosis and Nanofiltration. Water Cycle 2025, 6, 357–373. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Molinari, R.; Lavorato, C.; Argurio, P. Application of Hybrid Membrane Processes Coupling Separation and Biological or Chemical Reaction in Advanced Wastewater Treatment. Membranes 2020, 10, 281. [Google Scholar] [CrossRef] [PubMed]
- Ashar, A.; Bhatti, I.A.; Ashraf, M.; Tahir, A.A.; Aziz, H.; Yousuf, M.; Ahmad, M.; Mohsin, M.; Bhutta, Z.A. Fe3+ @ ZnO/polyester based solar photocatalytic membrane reactor for abatement of RB5 dye. J. Clean. Prod. 2020, 246, 119010. [Google Scholar] [CrossRef]
- Chen, L.; Qiu, Y.R. Removal of Cd (II) from dilute aqueous solutions by complexation-ultrafiltration using rotating disk membrane and the shear stability of PAA-Cd complex. Chin. J. Chem. Eng. 2019, 27, 519–527. [Google Scholar] [CrossRef]
- Fabregat, V.; Pagan, J.M. Technical-Economic Feasibility of a New Method of Adsorbent Materials and Advanced Oxidation Techniques to Remove Emerging Pollutants in Treated Wastewater. Water 2024, 16, 814. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, L.M.; Nguyen, T.T.T.; Nguyen, D.T.C.; Tran, T.V. Synthesis strategies, regeneration, cost analysis, challenges and future prospects of bacterial cellulose-based aerogels for water treatment: A review. Chemosphere 2024, 362, 142654. [Google Scholar] [CrossRef]
- Zhi, M.J.; Tang, H.; Wu, M.C.; Ouyang, C.; Hong, Z.L.; Wu, N.Q. Synthesis and Photocatalysis of Metal Oxide Aerogels: A Review. Energ. Fuel 2022, 36, 11359–11379. [Google Scholar] [CrossRef]
- Dong, T.; Ye, H.B.; Wang, W.H.; Zhang, Y.M.; Han, G.T.; Peng, F.D.; Lou, C.W.; Chi, S.; Liu, Y.M.; Liu, C.; et al. A sustainable layered nanofiber/sheet aerogels enabling repeated life cycles for effective oil/water separation. J. Hazard. Mater. 2023, 454, 131474. [Google Scholar] [CrossRef]
- Tarashi, S.; Nazockdast, H.; Shafaghsorkh, S.; Sodeifian, G. A porous monolith polysaccharide-based adsorbent aerogel with enhanced mechanical performance and efficient adsorption capacity. Sep. Purif. Technol. 2022, 287, 120587. [Google Scholar] [CrossRef]
- Ghica, M.E.; Mandinga, J.G.S.; Linhares, T.; Almeida, C.M.R.; Duraes, L. Improvement of the Mechanical Properties of Silica Aerogels for Thermal Insulation Applications through a Combination of Aramid Nanofibres and Microfibres. Gels 2023, 9, 535. [Google Scholar] [CrossRef]
- Segneanu, A.-E.; Herea, D.-D.; Buema, G.; Bradu, I.A.; Cepan, M.; Grozescu, I. Advanced Aerogels for Water Remediation: Unraveling Their Potential in Fats, Oils, and Grease Sorption—A Comprehensive Review. Gels 2025, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhuang, J.S.; Xia, Y.Y.; Zhang, J.C.; Zhang, X.J. Facile fabrication of sulfonated bacterial cellulose-silane composite aerogels via in suit polymerization for enhanced oil/water separation performance. Int. J. Biol. Macromol. 2024, 283, 137650. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.B.; Gu, Y.; Sun, B.J.; Li, W.P.; Qu, X.; Sun, D.P. A one-pot biosynthesis of an aerogel composite based on attapulgite clay/bacterial cellulose to remove Pb2+ ion. Micro Nano Lett. 2021, 16, 405–412. [Google Scholar] [CrossRef]
- Sharma, S.K.; Ranjani, P.; Mamane, H.; Kumar, R. Preparation of graphene oxide-doped silica aerogel using supercritical method for efficient removal of emerging pollutants from wastewater. Sci. Rep. 2023, 13, 16448. [Google Scholar] [CrossRef]
- Cai, J.Z.; Niu, B.L.; Xie, Q.H.; Lu, N.; Huang, S.Y.; Zhao, G.H.; Zhao, J.C. Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices. Environ. Sci. Technol. 2022, 56, 2917–2935. [Google Scholar] [CrossRef]
- Atoufi, Z.; Ciftci, G.C.; Reid, M.S.; Larsson, P.A.; Wagberg, L. Green Ambient-Dried Aerogels with a Facile pH-Tunable Surface Charge for Adsorption of Cationic and Anionic Contaminants with High Selectivity. Biomacromolecules 2022, 23, 4934–4947. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yuan, K.Z.; Magagnin, L.; Wu, X.S.; Jiang, Z.Y.; Wang, W. Schiff base functionalized silica aerogels for enhanced removal of Pb (II) and Cu (II): Performances, DFT calculations and LCA analysis. Chem. Eng. J. 2023, 462, 142019. [Google Scholar] [CrossRef]
- Kara, I.T.; Kiyak, B.; Gunes, N.C.; Yucel, S. Life cycle assessment of aerogels: A critical review. J. Sol-Gel Sci. Technol. 2024, 111, 618–649. [Google Scholar] [CrossRef]
- Schroeter, B.; Jung, I.; Bauer, K.; Gurikov, P.; Smirnova, I. Hydrophobic Modification of Biopolymer Aerogels by Cold Plasma Coating. Polymers 2021, 13, 3000. [Google Scholar] [CrossRef]
- Karatum, O.; Bhuiya, M.M.H.; Carroll, M.K.; Anderson, A.M.; Plata, D.L. Life Cycle Assessment of Aerogel Manufacture on Small and Large Scales: Weighing the Use of Advanced Materials in Oil Spill Remediation. J. Ind. Ecol. 2018, 22, 1365–1377. [Google Scholar] [CrossRef]
- De Marco, I.; Riemma, S.; Iannone, R. Life cycle assessment of supercritical impregnation: Starch aerogel plus α-tocopherol tablets. J. Supercrit. Fluid. 2019, 143, 305–312. [Google Scholar] [CrossRef]
- Murray, C.C.; Safulko, A.; Vatankhah, H.; Liu, C.J.; Tajdini, B.; Marshall, R.E.; Bellona, C. PFAS adsorbent selection: The role of adsorbent use rate, water quality, and cost. J. Hazard. Mater. 2023, 454, 131481. [Google Scholar] [CrossRef]
- Ye, X.; Shang, S.S.; Zhao, Y.F.; Cui, S.; Zhong, Y.; Huang, L.J. Ultra-efficient adsorption of copper ions in chitosan-montmorillonite composite aerogel at wastewater treatment. Cellulose 2021, 28, 7201–7212. [Google Scholar] [CrossRef]
- Chen, K.; Feng, Q.G.; Ma, D.C.; Huang, X.X. Hydroxyl modification of silica aerogel: An effective adsorbent for cationic and anionic dyes. Colloid. Surf. A 2021, 616, 126331. [Google Scholar] [CrossRef]
- Kovtun, A.; Campodoni, E.; Favaretto, L.; Zambianchi, M.; Salatino, A.; Amalfitano, S.; Navacchia, M.L.; Casentini, B.; Palermo, V.; Sandri, M.; et al. Multifunctional graphene oxide/biopolymer composite aerogels for microcontaminants removal from drinking water. Chemosphere 2020, 259, 127501. [Google Scholar] [CrossRef]
- Tang, C.X.; Brodie, P.; Li, Y.Z.; Grishkewich, N.J.; Brunsting, M.; Tam, K.C. Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions. Chem. Eng. J. 2020, 392, 124821. [Google Scholar] [CrossRef]
- Masud, A.; Zhou, C.; Aich, N. Emerging investigator series: 3D printed graphene-biopolymer aerogels for water contaminant removal: A proof of concept. Environ. Sci.-Nano 2021, 8, 399–414. [Google Scholar] [CrossRef]
- Mruthunjayappa, M.H.; Sharma, V.T.; Dharmalingam, K.; Kotrappanavar, N.S.; Mondal, D. Engineering a Biopolymer-Based Ultrafast Permeable Aerogel Membrane Decorated with Task-Specific Fe-Al Nanocomposites for Robust Water Purification. ACS Appl. Bio Mater. 2020, 3, 5233–5243. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Pena, M.E.; Patel, M.; Lippincott, L.; Meng, X.; Kim, K.W. Removal of arsenate from water by adsorbents: A comparative case study. Environ. Geochem. Health 2011, 33, 133–141. [Google Scholar] [CrossRef]
- Garrido, R.; Silvestre, J.D.; Flores-Colen, I.; Júlio, M.D.; Pedroso, M. Economic assessment of the production of subcritically dried silica-based aerogels. J. Non-Cryst. Solids 2019, 516, 26–34. [Google Scholar] [CrossRef]
- Ashori, A.; Chiani, E.; Shokrollahzadeh, S.; Madadi, M.; Sun, F.B.; Zhang, X.M. Cellulose-Based Aerogels for Sustainable Dye Removal: Advances and Prospects. J. Polym. Environ. 2024, 32, 6149–6181. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, J.X.; Zhou, Y.; Zhang, X.; Liu, X.H. Artificial Intelligence-Based Microfluidic Platform for Detecting Contaminants in Water: A Review. Sensors 2024, 24, 4350. [Google Scholar] [CrossRef] [PubMed]
- Boccia, A.C.; Pulvirenti, A.; García-González, C.A.; Grisi, F.; Neagu, M. Compendium of Safety Regulatory for Safe Applications of Aerogels. Gels 2023, 9, 842. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.M.; Azat, S.; Kianfar, E.; Joshy, K.S.; Jazani, O.M.; Esmaeili, A.; Ahmadi, Z.; Haponiuk, J.; Thomas, S. Identifying gaps in practical use of epoxy foam/aerogels: Review—solutions and prospects. Rev. Chem. Eng. 2025, 41, 269–308. [Google Scholar] [CrossRef]
Type of Aerogel | Pollutant/Application | Adsorption Capacity | Ref. |
---|---|---|---|
Modified silica aerogel | Pb (II) | N/A | [68] |
Amidoxime-functionalized silica aerogels | Pb (II) Cu (II) | 598.05 mg⋅g−1 534.10 mg⋅g−1 | [69] |
C8/threonine-modified mesoporous silica aerogel | Azophloxine dye methylene blue dye | 152.43 mg⋅g−1 274.30 mg⋅g−1 | [70] |
Carbon nanomaterials-MTMS-based silica aerogel | Toluene Xylene | 170 mg⋅g−1 200 mg⋅g−1 | [31] |
Hydrophilic silica aerogel | Crystal violet dye | 137.17 mg⋅g−1 | [71] |
Polyvinyl alcohol (PVA)-assisted cellulose nanocrystals/SiO2 | Ciprofloxacin | 163.34 mg·g−1 | [72] |
Magnetic mesoporous Fe3C/carbon aerogel | As | 56.2 mg·g−1 | [76] |
Reduced graphene oxide−TiO2/sodium alginate aerogel | Ibuprofen Sulfamethoxazole | N/A | [79] |
Graphene oxide/polyethyleneimine aerogel | Hg | N/A | [80] |
3D reduced graphene oxides/Mn3O4 aerogel | antimonite (Sb(III)) antimonate (Sb(V)) | 151.84 mg·g−1 105.50 mg·g−1 | [81] |
Cellulose nanocrystalline/polyvinylamine (PVAm)/reduced graphene oxide aerogel | Diclofenac sodium | 605.87 mg g−1 | [84] |
Chitosan/zeolite composite aerogel | Indigo carmine dye Methylene blue dye | 221 mg g−1 108 mg g−1 | [85] |
3D polyaniline/cellulose nanofiber aerogel | Acid Red G dye Methyl Blue dye | 600.7 mg g−1 1369.1 mg g−1 | [43] |
Polyurea-crosslinked Ca-alginate aerogel beads | Pb (II) Diesel Mineral Pump oils | 29 mg g−1 4.9 mL/g−1 6.1 mL/g−1 4.9 mL/g−1 | [86] |
GO-TiO2/sodium alginate and rGO-TiO2/sodium alginate aerogels | photocatalytic degradation of microcystin-LR | N/A | [90] |
TiO2-sodium alginate composite aerogels | Oil-water separation | N/A | [91] |
Copper ferrite/reduced graphene oxide aerogel | Rhodamine B dye | N/A | [92] |
3D graphene/δ-MnO2 aerogels | Pb2+ Cd2+ Cu2+ | 643.62 mg g−1 250.31 mg g−1 228.46 mg g−1 | [93] |
3D magnetic bacterial cellulose nanofiber/GO aerogel (MBCNF/GOPA) | Malachite green dye | 270.27 mg g−1 | [95] |
Magnetic carboxymethyl chitosan (Fe3O4@PDA/CMC) aerogel | Methylene blue dye Crystal violet dye Methyl orange dye Congo red dye | 289.6 mg g−1 275.2 mg g−1 82.07 mg g−1 92.35 mg g−1 | [96] |
Magnetic carbon aerogel (MCA) containing Fe3O4 nanoparticles and sodium alginate (SA) | Cd (II) | 143.88 mg g−1 | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croitoru, A.-M.; Niculescu, A.-G.; Bîrcă, A.C.; Mihaiescu, D.E.; Rădulescu, M.; Grumezescu, A.M. Nanostructured Aerogels for Water Decontamination: Advances, Challenges, and Future Perspectives. Nanomaterials 2025, 15, 901. https://doi.org/10.3390/nano15120901
Croitoru A-M, Niculescu A-G, Bîrcă AC, Mihaiescu DE, Rădulescu M, Grumezescu AM. Nanostructured Aerogels for Water Decontamination: Advances, Challenges, and Future Perspectives. Nanomaterials. 2025; 15(12):901. https://doi.org/10.3390/nano15120901
Chicago/Turabian StyleCroitoru, Alexa-Maria, Adelina-Gabriela Niculescu, Alexandra Cătălina Bîrcă, Dan Eduard Mihaiescu, Marius Rădulescu, and Alexandru Mihai Grumezescu. 2025. "Nanostructured Aerogels for Water Decontamination: Advances, Challenges, and Future Perspectives" Nanomaterials 15, no. 12: 901. https://doi.org/10.3390/nano15120901
APA StyleCroitoru, A.-M., Niculescu, A.-G., Bîrcă, A. C., Mihaiescu, D. E., Rădulescu, M., & Grumezescu, A. M. (2025). Nanostructured Aerogels for Water Decontamination: Advances, Challenges, and Future Perspectives. Nanomaterials, 15(12), 901. https://doi.org/10.3390/nano15120901