Improving Na2Ti3O7 Anode Performance in Sodium-Ion Batteries via a Al Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NTO, NTO-Al, and NTO-Ca Anode
2.3. Preparation of Electrode and Cell
2.4. Electrochemical Performance
2.5. Hydrogen Programmed Temperature Reduction (H2-TPR)
2.6. Charactrization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.; Chen, J.; Feng, G.; Chen, Z.; Yang, W.; Yang, C.; Shmatova, O.; Hu, Y.-S.; Zhao, J. A novel KTP-type NaTiPO4F electrode material for high-performance Na-ion batteries. Energy Storage Mater. 2025, 76, 104156. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Y.; Han, S.; Chen, Z.; Ma, Y.; Guo, Q.; Zhang, P.; Yang, W.; Yang, C.; Zhao, J.; et al. Rational Design of Aqueous Na Ion Batteries Toward High Energy Density and Long Cycle Life. J. Am. Chem. Soc. 2025, 147, 7039–7049. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Gao, Z.; Qian, D.; Waterhouse, G.I.N.; Liu, J. Deeper Insights into the Morphology Effect of Na2Ti3O7 Nanoarrays on Sodium-Ion Storage. Small 2024, 20, 2400845. [Google Scholar] [CrossRef]
- Cao, Y.; Ye, Q.; Wang, F.; Fan, X.; Hu, L.; Wang, F.; Zhai, T.; Li, H. A New Triclinic Phase Na2Ti3O7 Anode for Sodium-Ion Battery. Adv. Funct. Mater. 2020, 30, 2003733. [Google Scholar] [CrossRef]
- Jin, X.; Li, F.; Zhang, X.; Zeng, G.; Liu, X.; Cai, B.; Wang, C.; Zhao, X.S. Isovalent doping of tin in sodium trititanate for enhanced sodium-ion battery performance. J. Energy Chem. 2025, 103, 324–332. [Google Scholar] [CrossRef]
- Tian, R.-N.; Zhao, S.; Lv, Z.; Lu, G.; Fu, M.; Chen, J.; Wang, D.; Dong, C.; Mao, Z. Topological proton regulation of interlayered local structure in sodium titanite for wide-temperature sodium storage. Carbon Energy 2024, 6, e560. [Google Scholar] [CrossRef]
- Meng, W.; Dang, Z.; Li, D.; Jiang, L. Long-Cycle-Life Sodium-Ion Battery Fabrication via a Unique Chemical Bonding Interface Mechanism. Adv. Mater. 2023, 35, 2301376. [Google Scholar] [CrossRef]
- Moustafa, E.; Esmat, M.; Iwanade, A.; Oishi, M.; Nagai, T.; Tsunoji, N.; Fukata, N.; Chaikittisilp, W.; Ide, Y. 2D-to-1D Conversion of a Layered Sodium Titanate via Rational Framework Splitting for Highly Efficient Cation Exchange. Small Methods 2025, 9, 2400947. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Chen, Z.; Wang, J.; Jiang, Y.; Ao, J.; Wang, R.; Pan, J.; Wei, Q.; Zhang, X. Heterointerface with Continuous Channels Enables Fast Na+ Transport in Layered Na2Ti3O7. ACS Nano 2025, 19, 10337–10346. [Google Scholar] [CrossRef]
- Dong, J.; Jiang, Y.; Wang, R.; Wei, Q.; An, Q.; Zhang, X. Review and prospects on the low-voltage Na2Ti3O7 anode materials for sodium-ion batteries. J. Energy Chem. 2024, 88, 446–460. [Google Scholar] [CrossRef]
- Shang, Z.; Zhang, T.; Yang, Q.; Wang, D.; Liao, Y.; Xie, D.; Dai, Y.; Wang, Y.; Yuan, S. Constructing Fe2O3/Carbon heterointerfaces on porous carbon fibers: Achieving a synergistic effect for enhanced supercapacitors. J. Power Sources 2025, 633, 236468. [Google Scholar] [CrossRef]
- Xie, D.; Liu, S.; Wei, W.; Zhou, Z.; Fu, X.; Shang, Z.; Wang, Y.; Yuan, S. Nitrogen-Doped Porous Carbon Fiber as a Self-Supporting Electrode for Boosting Zinc-Ion Hybrid Supercapacitors. Ind. Eng. Chem. Res. 2024, 63, 21146–21153. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Zheng, X.; Tian, X.; Yuan, S. Enhancing Energy Storage via Confining Sulfite Anions onto Iron Oxide/Poly(3,4-Ethylenedioxythiophene) Heterointerface. ACS Appl. Mater. Interfaces 2023, 15, 59413–59421. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Shen, J.; Wang, S.; Wang, Y.; Liang, Y.; Yuan, S. Constructing high activity Cu/Cu2O via nitrate-assisted directed evolution for enhanced electro catalytic nitrate-to-ammonia conversion. Sep. Purif. Technol. 2025, 369, 133165. [Google Scholar] [CrossRef]
- Pan, D.; Chen, W.; Sun, S.; Lu, X.; Wu, X.; Yu, C.; Hu, Y.-S.; Bai, Y. A high-rate capability and energy density sodium ion full cell enabled by F-doped Na2Ti3O7 hollow spheres. J. Mater. Chem. A 2022, 10, 23232–23243. [Google Scholar] [CrossRef]
- Li, F.; Gao, L.; Lv, Y.; Cai, B.; Wang, C.; Zhao, X.S. Doping of potassium by partial substitution of sodium in sodium trititanate for improved sodium-ion storage properties. J. Power Sources 2024, 623, 235393. [Google Scholar] [CrossRef]
- Gao, L.; Ma, Y.; Cao, M. Self-supported Se-doped Na2Ti3O7 arrays for high performance sodium ion batteries. Int. J. Hydrogen Energy 2024, 49, 1–10. [Google Scholar] [CrossRef]
- Wang, L.; Ou, W.; Liu, H.; Wang, S.; Xia, Z.; Wang, X.; Yu, K. Electronic structure optimization of titanium-based layered oxide to boost flexible sensing performance. Appl. Surf. Sci. 2023, 618, 156702. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Xiao, J.; Tian, X.; Yuan, S. Enhancing electrochemical performance of ultrasmall Fe2O3-embedded carbon nanotubes via combusting-induced high-valence dopants. J. Mater. Sci. Technol. 2023, 134, 142–150. [Google Scholar] [CrossRef]
- Xia, J.; Zhao, H.; Pang, W.K.; Yin, Z.; Zhou, B.; He, G.; Guo, Z.; Du, Y. Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodium-ion batteries. Chem. Sci. 2018, 9, 3421–3425. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.; Mei, C.; Xu, J.; Wong, C.-P. Improving the sodiation performance of Na2Ti3O7 through Nb-doping. Electrochim. Acta 2017, 224, 446–451. [Google Scholar] [CrossRef]
- Pak, Y.-C.; Rim, C.-H.; Hwang, S.-G.; Ri, K.-C.; Yu, C.-J. Defect formation and ambivalent effects on electrochemical performance in layered sodium titanate Na2Ti3O7. Phys. Chem. Chem. Phys. 2023, 25, 3420–3431. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Fang, L.; Hou, L.; Zhang, Y.; Wang, Y.; Yan, G. Synthesis of highly hydrophobic rutile titania-silica nanocomposites by an improved hydrolysis co-precipitation method. Ceram. Int. 2017, 43, 5592–5598. [Google Scholar] [CrossRef]
- Pradeep, A.; Kumar, B.S.; Kumar, A.; Srihari, V.; Poswal, H.K.; Mukhopadhyay, A. Electrochemically stable and very high ‘Rate-capable’ bi-phase Na-titanate based composite anodes for Na-ion batteries. Electrochim. Acta 2020, 362, 137122. [Google Scholar] [CrossRef]
- de Abreu Lima, C.D.; dos Santos Sousa, R.; Miranda, A.W.; Moura, J.V.B.; de Sousa Pinheiro, G.; Viana, B.C.; Lima, I.S.; Oliveira, T.M.B.F.; Baffa, O.; Araujo, J.F.D.F.; et al. Synthesis, characterization, and thermal stability study of sodium and sodium–aluminum titanate nanotubes. Solid State Sci. 2023, 138, 107134. [Google Scholar] [CrossRef]
- Zhu, L.; Yin, X.; Pan, C.; Han, Q.; Miao, Y.; Liu, J.; Xie, L.; Cao, X. Facile synthesis of nanorods Na2Ti6O13 as anode materials for high-performance sodium ion batteries. J. Alloys Compd. 2022, 906, 164306. [Google Scholar] [CrossRef]
- Zuo, C.; Shao, Y.; Li, M.; Zhang, W.; Zhu, D.; Tang, W.; Hu, J.; Liu, P.; Xiong, F.; An, Q. Layered Na2Ti3O7 as an Ultrastable Intercalation-Type Anode for Non-Aqueous Calcium-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 33733–33739. [Google Scholar] [CrossRef]
- Minakshi, M.; Mitchell, D.R.G.; Baur, C.; Chable, J.; Barlow, A.J.; Fichtner, M.; Banerjee, A.; Chakraborty, S.; Ahuja, R. Phase evolution in calcium molybdate nanoparticles as a function of synthesis temperature and its electrochemical effect on energy storage. Nanoscale Adv. 2019, 1, 565–580. [Google Scholar] [CrossRef]
- Minakshi, M.; Barmi, M.; Mitchell, D.R.G.; Barlow, A.J.; Fichtner, M. Effect of oxidizer in the synthesis of NiO anchored nanostructure nickel molybdate for sodium-ion battery. Mater. Today Energy 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Minakshi, M.; Mitchell, D.R.G.; Munnangi, A.R.; Barlow, A.J.; Fichtner, M. New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices. Nanoscale 2018, 10, 13277–13288. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhen, Y.; Lu, Y.; Zhou, K.; Huang, J.; Huang, Z.; Mathur, S.; Hong, Z. Structural evolution from layered Na2Ti3O7 to Na2Ti6O13 nanowires enabling a highly reversible anode for Mg-ion batteries. Nanoscale 2020, 12, 230–238. [Google Scholar] [CrossRef] [PubMed]
- e Silva, F.L.R.; Filho, A.A.A.; da Silva, M.B.; Balzuweit, K.; Bantignies, J.-L.; Caetano, E.W.S.; Moreira, R.L.; Freire, V.N.; Righi, A. Polarized Raman, FTIR, and DFT study of NaTiO microcrystals. J. Raman Spectrosc. 2018, 49, 538–548. [Google Scholar] [CrossRef]
- Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J.-M.; Palacín, M.R. Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries. Chem. Mater. 2011, 23, 4109–4111. [Google Scholar] [CrossRef]
- da Silva, J.P.; Biondo, M.M.; Nobre, F.X.; Anglada-Rivera, J.; Almeida, A.; Agostinho-Moreira, J.; Sanches, E.A.; Paula, M.M.d.S.; Aguilera, L.; Leyet, Y. Structure and electrical properties of the composite Na2Ti3O7/ Na2Ti6O13/POMA: A study of the effect of adding POMA. J. Alloys Compd. 2021, 867, 159025. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.; Fan, X.; Xiao, X.; Zheng, J.; Huang, X. Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes. J. Mater. Chem. A 2017, 5, 6178–6185. [Google Scholar] [CrossRef]
- Tsiamtsouri, M.A.; Allan, P.K.; Pell, A.J.; Stratford, J.M.; Kim, G.; Kerber, R.N.; Magusin, P.C.M.M.; Jefferson, D.A.; Grey, C.P. Exfoliation of Layered Na-Ion Anode Material Na2Ti3O7 for Enhanced Capacity and Cyclability. Chem. Mater. 2018, 30, 1505–1516. [Google Scholar] [CrossRef]
- Song, T.; Chen, H.; Xu, Q.; Liu, H.; Wang, Y.-G.; Xia, Y. Black Phosphorus Stabilizing Na2Ti3O7/C Each Other with an Improved Electrochemical Property for Sodium-Ion Storage. ACS Appl. Mater. Interfaces 2018, 10, 37163–37171. [Google Scholar] [CrossRef]
- Muñoz-Márquez, M.A.; Zarrabeitia, M.; Castillo-Martínez, E.; Eguía-Barrio, A.; Rojo, T.; Casas-Cabanas, M. Composition and Evolution of the Solid-Electrolyte Interphase in Na2Ti3O7 Electrodes for Na-Ion Batteries: XPS and Auger Parameter Analysis. ACS Appl. Mater. Interfaces 2015, 7, 7801–7808. [Google Scholar] [CrossRef]
- Li, M.; Zhao, J.; Li, Y.; Li, M.; Wu, Y.; Wang, C.; Jiao, H.; Na, P. Enhanced adsorption of cesium ions by electrochemically switched ion exchange method: Based on surface-synthetic Na2Ti3O7 nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123712. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Lu, Z.; Zhang, L.; Xie, F.; Vasileff, A.; Qiao, S.-Z. Efficient Surface Modulation of Single-Crystalline Na2Ti3O7 Nanotube Arrays with Ti3+ Self-Doping toward Superior Sodium Storage. ACS Mater. Lett. 2019, 1, 389–398. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.; Zhang, T.; Ouyang, L.; Yuan, S. Single-Step Preparation of Ultrasmall Iron Oxide-Embedded Carbon Nanotubes on Carbon Cloth with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. ACS Appl. Mater. Interfaces 2021, 13, 45670–45678. [Google Scholar] [CrossRef] [PubMed]
- Alev, O.; Özdemir, O.; Kılıç, A.; Akcan, D.; Büyükköse, S. Effect of Al doping on structural and optical properties of atomic layer deposited ZnO thin films. Surf. Interfaces 2024, 52, 104942. [Google Scholar] [CrossRef]
- Tong, Y.; Wu, C.; He, H.; Wang, Y.; Yuan, S. Iron-assisted molten salt synthesis of highly graphitized hierarchical porous N-doped carbon for enhanced aqueous energy storage. J. Power Sources 2025, 644, 237086. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Liu, S.; Wei, Z.; Zhang, T.C.; Yuan, S. Bilayer diatomite-based composite coatings with superhydrophobic and self-healing properties for enhanced anticorrosion of AZ31B magnesium alloys. Surf. Coat. Technol. 2024, 489, 131151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Xia, Y.; Song, K.; Cao, Y.; Huang, C.; Chen, J.; Wang, Y.; Xu, C. Improving Na2Ti3O7 Anode Performance in Sodium-Ion Batteries via a Al Doping. Nanomaterials 2025, 15, 885. https://doi.org/10.3390/nano15120885
Wu C, Xia Y, Song K, Cao Y, Huang C, Chen J, Wang Y, Xu C. Improving Na2Ti3O7 Anode Performance in Sodium-Ion Batteries via a Al Doping. Nanomaterials. 2025; 15(12):885. https://doi.org/10.3390/nano15120885
Chicago/Turabian StyleWu, Chen, Yuandong Xia, Kejing Song, Yongda Cao, Chenzhi Huang, Jiayi Chen, Yuan Wang, and Chunliu Xu. 2025. "Improving Na2Ti3O7 Anode Performance in Sodium-Ion Batteries via a Al Doping" Nanomaterials 15, no. 12: 885. https://doi.org/10.3390/nano15120885
APA StyleWu, C., Xia, Y., Song, K., Cao, Y., Huang, C., Chen, J., Wang, Y., & Xu, C. (2025). Improving Na2Ti3O7 Anode Performance in Sodium-Ion Batteries via a Al Doping. Nanomaterials, 15(12), 885. https://doi.org/10.3390/nano15120885