Optimizing High-Volume Fly Ash Mortar with Nano-SiO2 and PVA Fibers: Performance and Microstructure
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Design and Test Methods
2.2.1. Test Methods of Mechanical Properties
2.2.2. Capillary Absorption Test Method
2.2.3. Drying Shrinkage Test Method
3. Results
3.1. Mechanical Properties
3.2. Capillary Water Absorption
3.3. Drying Shrinkage
3.4. Morphology and Microstructure
4. Discussion
5. Conclusions
- (1)
- NS enhances early-age mortar strength, with 0.5% NS increasing 7-day flexural strength by 85.8% and 1.5% NS boosting compressive strength by 32.1%. PVA fibers further improve performance, as a 1.5% content achieves 77.6% higher 28-day flexural strength versus ordinary mortar.
- (2)
- NS and PVA fibers synergistically enhance mortar mechanics. At 7 days, flexural and compressive strengths increase by 105.8% and 25.1%, respectively. By 28 days, the NS-PVA mix maintains improvements of 36.9% (flexural) and 18.9% (compressive) versus plain mortar, demonstrating complementary reinforcement.
- (3)
- NS and PVA fibers significantly reduce the mortar’s capillary absorption. With 0.5% PVA, absorption drops by 50.8%; with 2.0% NS, it decreases by 62.2%. The optimal mix (1.0% PVA + 2.5% NS) reduces absorption by 71.3% compared to ordinary fly ash mortar.
- (4)
- Fly ash mortar exhibits significant early-age drying shrinkage that stabilizes over time. Both NS and PVA fiber independently reduce shrinkage, with 2.0% NS decreasing it by 40.0% and 0.2% PVA fibers by 14.3% at 180 days. The combined use of 2.0% NS and 1.0% PVA fibers shows superior performance, reducing shrinkage by 38.3% (7 d), 33.3% (14 d), 30.0% (28 d), 31.6% (90 d), and 31.4% (180 d) compared to plain mortar. This synergy stems from NS refining pore structure and PVA fibers restraining crack development.
- (5)
- Microstructure analysis shows that NS fills mortar voids, reducing porosity and densifying the structure, while PVA fibers bond tightly with the matrix, inhibiting crack formation. Together, they improve mechanical properties and significantly reduce drying shrinkage.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, D.-Y.; Noguchi, T.; Kitagaki, R.; Park, W.-J. CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renew. Sustain. Energy Rev. 2014, 38, 796–810. [Google Scholar] [CrossRef]
- Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Guo, Z.; Li, W. Study on properties of alkali activated slag/fly ash composite concrete. J. China Foreign Highw. 2022, 42, 216–220. [Google Scholar]
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards sustainable concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef]
- Lin, R.-S.; Liao, Y.; Fu, C.; Pan, T.-H.; Guo, R.; Wang, X.-Y. Mechanism analysis of microwave-carbonation solidification for carbide slag-based low-carbon materials. Cem. Concr. Compos. 2025, 157, 105938. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Hu, X.; Zhu, J.; Guan, X.; Shi, C. Effect of pH environment on carbonation properties of γ-C2S. Constr. Build. Mater. 2025, 461, 139888. [Google Scholar] [CrossRef]
- Yu, J.; Lu, C.; Leung, C.K.Y.; Li, G. Mechanical properties of green structural concrete with ultrahigh-volume fly ash. Constr. Build. Mater. 2017, 147, 510–518. [Google Scholar] [CrossRef]
- Jing, R.; Liu, Y.; Yan, P. Uncovering the effect of fly ash cenospheres on the macroscopic properties and microstructure of ultra high-performance concrete (UHPC). Constr. Build. Mater. 2021, 286, 122977. [Google Scholar] [CrossRef]
- Yu, J.; Li, G.; Leung, C.K.Y. Hydration and physical characteristics of ultrahigh-volume fly ash-cement systems with low water/binder ratio. Constr. Build. Mater. 2018, 161, 509–518. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, M.; Li, G.; Meng, J.; Leung, C.K.Y. Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar. Constr. Build. Mater. 2020, 239, 117853. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. J. Clean. Prod. 2017, 162, 1407–1417. [Google Scholar] [CrossRef]
- Li, G.; Xu, X.; Chen, E.; Fan, J.; Xiong, G. Properties of cement-based bricks with oyster-shells ash. J. Clean. Prod. 2015, 91, 279–287. [Google Scholar] [CrossRef]
- Bouzoubaâ, N.; Zhang, M.H.; Malhotra, V.M. Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cem. Concr. Res. 2001, 31, 1393–1402. [Google Scholar] [CrossRef]
- Dinakar, P.; Babu, K.G.; Santhanam, M. Durability properties of high volume fly ash self compacting concretes. Cem. Concr. Compos. 2008, 30, 880–886. [Google Scholar] [CrossRef]
- Park, B.; Choi, Y.C. Hydration and pore-structure characteristics of high-volume fly ash cement pastes. Constr. Build. Mater. 2021, 278, 122390. [Google Scholar] [CrossRef]
- Tang, M.; Ba, H.; Li, Y. Sudy on compound effect of silica fume aand nano-SiOx for cementing composite materials. J. Chin. Ceram. Soc. 2003, 31, 523–527. [Google Scholar]
- Qing, Y. Research on the Comparison of Pozzolanic Activity between Nano SiO2 and Silica Fume. Concrete 2001, 3, 19–22. [Google Scholar]
- Huang, C.; Su, Y.-F.; Baah, P.; Nantung, T.; Lu, N. Investigation of medium-term self-healing performance of strain-hardening cementitious composites incorporated with colloidal nano silica. Constr. Build. Mater. 2022, 348, 128687. [Google Scholar] [CrossRef]
- Rong, Z.; Sun, W.; Xiao, H.; Jiang, G. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 2015, 56, 25–31. [Google Scholar] [CrossRef]
- Sun, J.; Shen, X.; Tan, G.; Tanner Jennifer, E. Modification Effects of Nano-SiO2 on Early Compressive Strength and Hydration Characteristics of High-Volume Fly Ash Concrete. J. Mater. Civ. Eng. 2019, 31, 04019057. [Google Scholar] [CrossRef]
- Bai, S.; Guan, X.; Li, G. Effect of the early-age frost damage and nano-SiO2 modification on the properties of Portland cement paste. Constr. Build. Mater. 2020, 262, 120098. [Google Scholar] [CrossRef]
- Wang, Y.; Hughes, P.; Niu, H.; Fan, Y. A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica. J. Clean. Prod. 2019, 236, 117602. [Google Scholar] [CrossRef]
- Chen, Y.X.; Li, S.; Mezari, B.; Hensen, E.J.M.; Yu, R.; Schollbach, K.; Brouwers, H.J.H.; Yu, Q. Effect of highly dispersed colloidal olivine nano-silica on early age properties of ultra-high performance concrete. Cem. Concr. Compos. 2022, 131, 104564. [Google Scholar] [CrossRef]
- Wang, J.; Lu, X.; Ma, B.; Tan, H. Cement-Based Materials Modified by Colloidal Nano-Silica: Impermeability Characteristic and Microstructure. Nanomaterials 2022, 12, 3176. [Google Scholar] [CrossRef]
- Fu, C.; Guo, R.; Lin, Z.; Xia, H.; Yang, Y.; Ma, Q. Effect of nanosilica and silica fume on the mechanical properties and microstructure of lightweight engineered cementitious composites. Constr. Build. Mater. 2021, 298, 123788. [Google Scholar] [CrossRef]
- Li, G.; Liu, Q.; Niu, M.; Cao, L.; Nan, B.; Shi, C. Characteristic of silica nanoparticles on mechanical performance and microstructure of sulphoaluminate cement/ordinary Portland cement binary blends. Constr. Build. Mater. 2020, 242, 118158. [Google Scholar] [CrossRef]
- Fallah-Valukolaee, S.; Nematzadeh, M. Experimental study for determining applicable models of compressive stress–strain behavior of hybrid synthetic fiber-reinforced high-strength concrete. Eur. J. Environ. Civ. Eng. 2020, 24, 34–59. [Google Scholar] [CrossRef]
- Alzeebaree, R. Bond Strength and Fracture Toughness of Alkali Activated Self-Compacting Concrete Incorporating Metakaolin or Nanosilica. Sustainability 2022, 14, 6798. [Google Scholar] [CrossRef]
- Regalla, S.S.; N, S.K. Effect of nano SiO2 on rheology, nucleation seeding, hydration mechanism, mechanical properties and microstructure amelioration of ultra-high-performance concrete. Case Stud. Constr. Mater. 2024, 20, e03147. [Google Scholar] [CrossRef]
- Fan, C.; Zheng, Y.; Zhuo, J.; Du, C.; Hu, S. Study on mechanical and bonding properties of nano-SiO2 reinforced recycled concrete: Macro test and micro analysis. J. Build. Eng. 2024, 94, 109877. [Google Scholar] [CrossRef]
- Dos Santos Batista, G.; Schemmer, L.B.; de Abreu Siqueira, T.; da Costa, E.M. Chemical resistance and mechanical properties of nanosilica addition in oil well cement. J. Pet. Sci. Eng. 2021, 196, 107742. [Google Scholar] [CrossRef]
- Jalal, M.; Mansouri, E.; Sharifipour, M.; Pouladkhan, A.R. Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater. Des. 2012, 34, 389–400. [Google Scholar] [CrossRef]
- Ibrahim, R.K.; Hamid, R.; Taha, M.R. Fire resistance of high-volume fly ash mortars with nanosilica addition. Constr. Build. Mater. 2012, 36, 779–786. [Google Scholar] [CrossRef]
- Akbulut, Z.F.; Guler, S. Enhancing the resilience of cement mortar: Investigating Nano-SiO2 size and hybrid fiber effects on sulfuric acid resistance. J. Build. Eng. 2024, 98, 111187. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Teng, S. Experiments on drying shrinkage and creep of high performance hybrid-fiber-reinforced concrete. Cem. Concr. Compos. 2020, 106, 103481. [Google Scholar] [CrossRef]
- Juan, H.; Hongfa, Y.; Kang, B. Effect of Hybrid Fibers on Drying Shrinkage of Concretes with High Content Mineral Admixtures. J. Mater. Sci. Eng. 2008, 26, 574–578. [Google Scholar]
- Jianfei, L.; Qingjun, Z.; Peiliang, C.; Shuanfa, C. Effect of Fiber and Fly Ash on the Properties of Cement-based Composite Materials Containing Modified Waste Rubber Powder. Bull. Chin. Ceram. Soc. 2014, 33, 2032–2037. [Google Scholar]
- Yu, J.; Zhai, T.; Liang, X.; Sun, X. Fluidity and Mechanical Properties of Steel-PVA Fiber Reinforced Concrete. Jianzhu Cailiao Xuebao/J. Build. Mater. 2018, 21, 402–407. [Google Scholar] [CrossRef]
- Caihua, S.; Jin, Q.; Xiaofeng, C.; Fei, X.; Wei, C.; Jiawang, G. Influence of Fiber Content on Mechanical Parameters of PVA Fiber Concrete and Method for Calculating Compression Toughness Index. Guisuanyan Tongbao 2020, 39, 3152–3160. [Google Scholar]
- Noushini, A.; Samali, B.; Vessalas, K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr. Build. Mater. 2013, 49, 374–383. [Google Scholar] [CrossRef]
- Dong, B.; Pan, J.; Xu, L. Numerical and theoretical analysis of beam-to-column connections with ECC ring beams subjected to local compression loading. J. Build. Eng. 2022, 52, 104466. [Google Scholar] [CrossRef]
- Zhuang, M.-L.; Sun, C.; Gao, L.; Qiao, Y.; Chen, J.; Zhang, W.; Ma, Y. Investigation on drift ratio limits of PVA fiber reinforced concrete columns under different performance levels based on the Kunnath damage model. Case Stud. Constr. Mater. 2022, 17, e01403. [Google Scholar] [CrossRef]
- Wang, J.; Dong, H. PVA fiber-reinforced ultrafine fly ash concrete: Engineering properties, resistance to chloride ion penetration, and microstructure. J. Build. Eng. 2023, 66, 105858. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Du, C.; Hu, S.; Wang, Z. Hybrid effects of basalt and polyvinyl alcohol fibers on the mechanical properties and macro-microscopic analysis of low-heat portland cement concrete. J. Mater. Res. Technol. 2023, 25, 608–632. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, W.; Wang, S. PVA fiber/cement-based interface in silane coupler KH560 reinforced high performance concrete—Experimental and molecular dynamics study. Constr. Build. Mater. 2023, 395, 132184. [Google Scholar] [CrossRef]
- Huo, X.; Wang, P.; Wang, S.; Guo, R.; Wang, Y. Experimental study on the mechanical properties and impermeability of basalt-PVA hybrid fibre reinforced concrete. Case Stud. Constr. Mater. 2024, 21, e03646. [Google Scholar] [CrossRef]
- Deng, Z.; Zhang, S.; Deng, Z. PVA fiber-reinforced geopolymer mortar made with hybrid recycled aggregates: Toward thermal insulation, lightweight and improved durability. J. Clean. Prod. 2023, 426, 139200. [Google Scholar] [CrossRef]
- Kale, V.; Shelar, A.; Javanjal, V.; Gadhave, S.; Munde, K.; Sharma, A. Experimental study on fiber reinforced concrete using PVA fiber and glass powder. Mater. Today Proc. 2024, 103, 582–586. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, M.; Liu, R.; Li, X.; Yan, J.; Du, H. Enhancing self-healing efficiency of concrete using multifunctional granules and PVA fibers. J. Build. Eng. 2023, 76, 107314. [Google Scholar] [CrossRef]
- Song, S.; Deng, M.; Zhang, M.; Guo, L.; Dong, Z.; Li, P. Flexural strengthening of reinforced concrete beams using textile-reinforced mortar improved with short PVA fibers. Structures 2023, 56, 104824. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Method for Cement Mortar Strength (ISO Method). Standards Press of China: Beijing, China, 2022.
- ISO 679:2009; Test Method for Cement Mortar Strength (ISO Method). China Building Industry Press: Beijing, China, 2009.
- Li, G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. 2004, 34, 1043–1049. [Google Scholar] [CrossRef]
- Liu, F.; Xu, K.; Ding, W.; Qiao, Y.; Wang, L. Microstructural characteristics and their impact on mechanical properties of steel-PVA fiber reinforced concrete. Cem. Concr. Compos. 2021, 123, 104196. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 3rd ed.; MeGraw Hill: New York, NY, USA, 2006. [Google Scholar]
- Maddalena, R.; Li, K.; Chater, P.A.; Michalik, S.; Hamilton, A. Direct synthesis of a solid calcium-silicate-hydrate (C-S-H). Constr. Build. Mater. 2019, 223, 554–565. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, J.; Xu, J.; Chen, B.; Mi, B.; Wei, Y.; Yao, W. Aerobic bacteria induced biomineralization: Effects of nutrient and calcium content on the nanostructure and chemical composition of simulated cement mixture. Cem. Concr. Compos. 2024, 154, 105801. [Google Scholar] [CrossRef]
- Jiang, H.; Tian, D.; Dong, M.; Lv, M.; Yang, X.; Lu, S. Effects of interlayer-modified layered double hydroxides with organic corrosion inhibiting ions on the properties of cement-based materials and reinforcement corrosion in chloride environment. Cem. Concr. Compos. 2024, 154, 105793. [Google Scholar] [CrossRef]
- Zhang, P.; Qi, D.; Hao, L.; Wang, Z.; Liu, H.; Zhang, D.; Xie, Y.; Zhao, E. Effect of w/b ratio and supplemental cementitious material on the chloride penetration and corrosion resistance of ferroaluminate cement concrete. Constr. Build. Mater. 2024, 431, 136481. [Google Scholar] [CrossRef]
- Land, G.; Stephan, D. The influence of nano-silica on the hydration of ordinary Portland cement. J. Mater. Sci. 2012, 47, 1011–1017. [Google Scholar] [CrossRef]
- Rashad, A.M. A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash. Constr. Build. Mater. 2014, 52, 437–464. [Google Scholar] [CrossRef]
- Zhang, L.; Bian, M.; Xiao, Z.; Wang, X.; Han, B. A comprehensive review of cementitious composites modified with nano silica: Fabrication, microstructures, properties and applications. Constr. Build. Mater. 2023, 409, 133922. [Google Scholar] [CrossRef]
SiO2/% | Al2O3/% | CaO/% | MgO/% | Fe2O3/% | K2O/% | MnO/% | SO4/% | Specific Surface, Blaine (m2/kg) | Compressive Strength, 28-Day (MPa) | |
---|---|---|---|---|---|---|---|---|---|---|
Cement | 18.3 | 4.5 | 62.4 | 2.1 | 0.3 | 1.5 | 2.3 | 2.97 | 350 | 50.6 |
Fly ash | 46.7 | 33.8 | 8.46 | - | 6.05 | 1.24 | - | 1.34 | 389 | - |
Content (%) | Average Diameter (nm) | Specific Surface, Blaine (m2/g) | Volume Density (g/cm3) | Density (g/cm3) | |
---|---|---|---|---|---|
nano-SiO2 | 99.9 | 20 | 240 | 0.06 | 2.2–2.6 |
Length (mm) | Diameter (mm) | Density (g·cm−3) | Tensile Strength (MPa) | Elastic Modulus, (GPa) | |
---|---|---|---|---|---|
PVA fiber | 12 | 0.026 | 1.3 | 1560 | 36.3 |
Mix Proportions (kg/m3) | Nano SiO2 (wt. %) | PVA Fiber (vol. %) | Superplasticizer (wt. %) | ||||
---|---|---|---|---|---|---|---|
Water | Cement | Fly ash | Sand | ||||
FA | 240 | 600 | 600 | 1200 | 0.0 | 0.0 | 2.0 |
NS0.5 | 240 | 600 | 600 | 1200 | 0.5 | 0.0 | 2.0 |
NS1.0 | 240 | 600 | 600 | 1200 | 1.0 | 0.0 | 2.0 |
NS1.5 | 240 | 600 | 600 | 1200 | 1.5 | 0.0 | 2.0 |
NS2.0 | 240 | 600 | 600 | 1200 | 2.0 | 0.0 | 2.0 |
NS2.5 | 240 | 600 | 600 | 1200 | 2.5 | 0.0 | 2.0 |
PVA0.2 | 240 | 600 | 600 | 1200 | 0.0 | 0.2 | 2.0 |
PVA 0.5 | 240 | 600 | 600 | 1200 | 0.0 | 0.5 | 2.0 |
PVA 1.0 | 240 | 600 | 600 | 1200 | 0.0 | 1.0 | 2.0 |
PVA 1.5 | 240 | 600 | 600 | 1200 | 0.0 | 1.5 | 2.0 |
NS0.5/PVA 1.0 | 240 | 600 | 600 | 1200 | 0.5 | 1.0 | 2.0 |
NS1.0/PVA 1.0 | 240 | 600 | 600 | 1200 | 1.0 | 1.0 | 2.0 |
NS1.5/PVA 1.0 | 240 | 600 | 600 | 1200 | 1.5 | 1.0 | 2.0 |
NS2.0/PVA 1.0 | 240 | 600 | 600 | 1200 | 2.0 | 1.0 | 2.0 |
NS2.5/PVA 1.0 | 240 | 600 | 600 | 1200 | 2.5 | 1.0 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, Z.; Li, G.; Lu, S. Optimizing High-Volume Fly Ash Mortar with Nano-SiO2 and PVA Fibers: Performance and Microstructure. Nanomaterials 2025, 15, 837. https://doi.org/10.3390/nano15110837
Zhao J, Wang Z, Li G, Lu S. Optimizing High-Volume Fly Ash Mortar with Nano-SiO2 and PVA Fibers: Performance and Microstructure. Nanomaterials. 2025; 15(11):837. https://doi.org/10.3390/nano15110837
Chicago/Turabian StyleZhao, Junliang, Zhongkun Wang, Gengying Li, and Shengliang Lu. 2025. "Optimizing High-Volume Fly Ash Mortar with Nano-SiO2 and PVA Fibers: Performance and Microstructure" Nanomaterials 15, no. 11: 837. https://doi.org/10.3390/nano15110837
APA StyleZhao, J., Wang, Z., Li, G., & Lu, S. (2025). Optimizing High-Volume Fly Ash Mortar with Nano-SiO2 and PVA Fibers: Performance and Microstructure. Nanomaterials, 15(11), 837. https://doi.org/10.3390/nano15110837