Molybdenum Disulfide and Reduced Graphene Oxide Hybrids as Anodes for Low-Temperature Lithium- and Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Instrumental Methods
2.3. Electrochemical Measurements
3. Results
3.1. Characterization of Hybrid Materials
3.2. Electrochemical Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Maier, J.; Yu, Y. Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ma, J.; Wang, J.; Zhang, X.; Zhou, G.; Liang, Z. Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling. Glob. Chall. 2022, 6, 2200067. [Google Scholar] [CrossRef] [PubMed]
- Chayambuka, K.; Mulder, G.; Danilov, D.L.; Notten, P.H.L. From Li-Ion Batteries toward Na-Ion Chemistries: Challenges and Opportunities. Adv. Energy Mater. 2020, 10, 2001310. [Google Scholar] [CrossRef]
- Huang, C.-K.; Sakamoto, J.S.; Wolfenstine, J.; Surampudi, S. The Limits of Low-Temperature Performance of Li-Ion Cells. J. Electrochem. Soc. 2000, 147, 2893. [Google Scholar] [CrossRef]
- Lin, H.P.; Chua, D.; Salomon, M.; Shiao, H.C.; Hendrickson, M.; Plichta, E.; Slane, S. Low-Temperature Behavior of Li-Ion Cells. Electrochem. Solid-State Lett. 2001, 4, A71. [Google Scholar] [CrossRef]
- Ratnakumar, B.V.; Smart, M.C.; Surampudi, S. Effects of SEI on the Kinetics of Lithium Intercalation. J. Power Sources 2001, 97–98, 137–139. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, C.; Wu, H.; Li, L.; Zhang, C. Progress, Challenge and Perspective of Graphite-Based Anode Materials for Lithium Batteries: A Review. J. Energy Storage 2024, 81, 110409. [Google Scholar] [CrossRef]
- Wang, G.; Wang, G.; Fei, L.; Zhao, L.; Zhang, H. Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries: Mechanisms, Strategies, and Prospects. Nano-Micro Lett. 2024, 16, 150. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Zhang, Y.; Yang, Z.; Lai, W.-H.; Liang, Y.; Dou, S.-X.; Liu, M.; Wang, Y.-X. Challenges and Prospects of Low-Temperature Rechargeable Batteries Electrolytes. Adv. Sci. 2024, 11, 2410318. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. Low Temperature Performance of Graphite Electrode in Li-Ion Cells. Electrochim. Acta 2002, 48, 241–246. [Google Scholar] [CrossRef]
- Wang, C.; Appleby, A.J.; Little, F.E. Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement. J. Electrochem. Soc. 2002, 149, A754. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. A New Approach toward Improved Low Temperature Performance of Li-Ion Battery. Electrochem. Commun. 2002, 4, 928–932. [Google Scholar] [CrossRef]
- Guo, R.; Han, W. The Effects of Electrolytes, Electrolyte/Electrode Interphase, and Binders on Lithium-Ion Batteries at Low Temperature. Mater. Today Sustain. 2022, 19, 100187. [Google Scholar] [CrossRef]
- Smart, M.C.; Ratnakumar, B.V.; Surampudi, S. Electrolytes for Low-Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates. J. Electrochem. Soc. 1999, 146, 486–492. [Google Scholar] [CrossRef]
- Li, Q.; Jiao, S.; Luo, L.; Ding, M.S.; Zheng, J.; Cartmell, S.S.; Wang, C.M.; Xu, K.; Zhang, J.G.; Xu, W. Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 18826–18835. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Guo, Y.; Li, Y.; Li, K. A Review on MoS2 Structure, Preparation, Energy Storage Applications and Challenges. J. Alloys Compd. 2024, 998, 174916. [Google Scholar] [CrossRef]
- Bulusheva, L.G.; Semushkina, G.I.; Fedorenko, A.D. Heteroatom-Doped Molybdenum Disulfide Nanomaterials for Gas Sensors, Alkali Metal-Ion Batteries and Supercapacitors. Nanomaterials 2023, 13, 2182. [Google Scholar] [CrossRef]
- Stolyarova, S.G.; Kotsun, A.A.; Shubin, Y.V.; Koroteev, V.O.; Plyusnin, P.E.; Mikhlin, Y.L.; Mel’Gunov, M.S.; Okotrub, A.V.; Bulusheva, L.G. Synthesis of Porous Nanostructured MoS2 Materials in Thermal Shock Conditions and Their Performance in Lithium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 10802–10813. [Google Scholar] [CrossRef]
- Wang, T.; Chen, S.; Pang, H.; Xue, H.; Yu, Y. MoS2-Based Nanocomposites for Electrochemical Energy Storage. Adv. Sci. 2017, 4, 1600289. [Google Scholar] [CrossRef]
- Wang, M.Y.; Li, S.Y.; Gao, C.K.; Fan, X.Q.; Quan, Y.; Li, X.H.; Li, C.L.; Zhang, N.S. The Production of Electrodes for Microsupercapacitors Based on MoS2-Modified Reduced Graphene Oxide Aerogels by 3D Printing. Xinxing Tan Cailiao/New Carbon Mater. 2024, 39, 283–296. [Google Scholar] [CrossRef]
- Liu, S.; Jia, K.; Yang, J.; He, S.; Liu, Z.; Wang, X.; Qiu, J. Encapsulating Flower-like MoS2 Nanosheets into Interlayer of Nitrogen-Doped Graphene for High-Performance Lithium-Ion Storage. Chem. Eng. J. 2023, 475, 146181. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Zhu, J.; Duan, X.; Xu, Z.; Liu, Y.; Yang, H.; Lu, B. Nature of Extra Capacity in MoS2 Electrodes: Molybdenum Atoms Accommodate with Lithium. Energy Storage Mater. 2019, 16, 37–45. [Google Scholar] [CrossRef]
- Cheng, T.; Xu, J.; Tan, Z.; Ye, J.; Tao, Z.; Du, Z.; Wu, Y.; Wu, S.; Ji, H.; Yu, Y.; et al. A Spray-Freezing Approach to Reduced Graphene Oxide/MoS2 Hybrids for Superior Energy Storage. Energy Storage Mater. 2018, 10, 282–290. [Google Scholar] [CrossRef]
- Du, G.; Gao, A.; Qian, G.; Lu, X.; Xie, F.; Lu, X. A Low-Temperature Na-MoS2 Rechargeable Battery. Small 2024, 20, 2404992. [Google Scholar] [CrossRef]
- Teng, Y.; Zhao, H.; Zhang, Z.; Li, Z.; Xia, Q.; Zhang, Y.; Zhao, L.; Du, X.; Du, Z.; Lv, P.; et al. MoS2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes. ACS Nano 2016, 10, 8526–8535. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Yang, Y.; Lv, W.; Lian, G.; Golberg, D.; Wang, X.; Zhao, X.; Ding, Y. A MoS2/Carbon Hybrid Anode for High-Performance Li-Ion Batteries at Low Temperature. Nano Energy 2020, 70, 104550. [Google Scholar] [CrossRef]
- Stolyarova, S.G.; Kobeleva, E.S.; Asanov, I.P.; Okotrub, A.V.; Bulusheva, L.G. Effect of the Graphite Oxide Composition on the Structure of Products Obtained by Sulfuric Acid Treatment at Elevated Temperatures. J. Struct. Chem. 2017, 58, 1180–1186. [Google Scholar] [CrossRef]
- Gorgolis, G.; Galiotis, C. Graphene Aerogels: A Review. 2D Mater. 2017, 4, 032001. [Google Scholar] [CrossRef]
- Stern, C.; Grinvald, S.; Kirshner, M.; Sinai, O.; Oksman, M.; Alon, H.; Meiron, O.E.; Bar-Sadan, M.; Houben, L.; Naveh, D. Growth Mechanisms and Electronic Properties of Vertically Aligned MoS2. Sci. Rep. 2018, 8, 16480. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Aljarb, A.; Shi, Y.; Li, L.J. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. Chem. Rev. 2018, 118, 6134–6150. [Google Scholar] [CrossRef]
- Choi, M.; Hwang, J.; Setiadi, H.; Chang, W.; Kim, J. One-Pot Synthesis of Molybdenum Disulfide–Reduced Graphene Oxide (MoS2-RGO) Composites and Their High Electrochemical Performance as an Anode in Lithium Ion Batteries. J. Supercrit. Fluids 2017, 127, 81–89. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Tinoco, M.; Maduro, L.; Masaki, M.; Okunishi, E.; Conesa-Boj, S. Strain-Dependent Edge Structures in MoS2 Layers. Nano Lett. 2017, 17, 7021–7026. [Google Scholar] [CrossRef]
- Li, X.; Guo, S.; Li, W.; Ren, X.; Su, J.; Song, Q.; Sobrido, A.J.; Wei, B. Edge-Rich MoS2 Grown on Edge-Oriented Three-Dimensional Graphene Glass for High-Performance Hydrogen Evolution. Nano Energy 2019, 57, 388–397. [Google Scholar] [CrossRef]
- Das, S.; Swain, G.; Parida, K. One Step towards the 1T/2H-MoS2 Mixed Phase: A Journey from Synthesis to Application. Mater. Chem. Front. 2021, 5, 2143–2172. [Google Scholar] [CrossRef]
- Guo, P.; Sun, K.; Liu, D.; Cheng, P.; Lv, M.; Liu, Q.; He, D. Molybdenum Disulfide Nanosheets Embedded in Hollow Nitrogen-Doped Carbon Spheres for Efficient Lithium/Sodium Storage with Enhanced Electrochemical Kinetics. Electrochim. Acta 2018, 283, 646–654. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Yan, Y.; Yu, Y.; Wang, Q.; Liu, M. High Areal Capacitance for Lithium Ion Storage Achieved by a Hierarchical Carbon/MoS2 Aerogel with Vertically Aligned Pores. ACS Appl. Energy Mater. 2018, 1, 4814–4823. [Google Scholar] [CrossRef]
- Koroteev, V.O.; Bulushev, D.A.; Chuvilin, A.L.; Okotrub, A.V.; Bulusheva, L.G. Nanometer-Sized MoS2 Clusters on Graphene Flakes for Catalytic Formic Acid Decomposition. ACS Catal. 2014, 4, 3950–3956. [Google Scholar] [CrossRef]
- Bulusheva, L.G.; Fedoseeva, Y.V.; Lavrukhina, S.A.; Sysoev, V.I.; Maksimovskii, E.A.; Makarova, A.A.; Okotrub, A.V. Role of Graphene Substrate in the Formation of MoS2-Based Nanoparticles with Improved Sensitivity to NO2 Gas. Appl. Surf. Sci. 2025, 679, 161104. [Google Scholar] [CrossRef]
- Koroteev, V.O.; Stolyarova, S.G.; Kotsun, A.A.; Modin, E.; Makarova, A.A.; Shubin, Y.V.; Plyusnin, P.E.; Okotrub, A.V.; Bulusheva, L.G. Nanoscale Coupling of MoS2 and Graphene via Rapid Thermal Decomposition of Ammonium Tetrathiomolybdate and Graphite Oxide for Boosting Capacity of Li-Ion Batteries. Carbon 2021, 173, 194–204. [Google Scholar] [CrossRef]
- Huang, M.; Chen, H.; He, J.; An, B.; Sun, L.; Li, Y.; Ren, X.; Deng, L.; Zhang, P. Ultra Small Few Layer MoS2 Embedded into Three-Dimensional Macro-Micro-Mesoporous Carbon as a High Performance Lithium Ion Batteries Anode with Superior Lithium Storage Capacity. Electrochim. Acta 2019, 317, 638–647. [Google Scholar] [CrossRef]
- Sedelnikova, O.V.; Gurova, O.A.; Makarova, A.A.; Fedorenko, A.D.; Nikolenko, A.D.; Plyusnin, P.E.; Arenal, R.; Bulusheva, L.G.; Okotrub, A.V. Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes. Nanomaterials 2020, 10, 818. [Google Scholar] [CrossRef] [PubMed]
- Casalongue, H.G.S.; Benck, J.D.; Tsai, C.; Karlsson, R.K.B.; Kaya, S.; Ng, M.L.; Pettersson, L.G.M.; Abild-Pedersen, F.; Nørskov, J.K.; Ogasawara, H.; et al. Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. J. Phys. Chem. C 2014, 118, 29252–29259. [Google Scholar] [CrossRef]
- Weber, T.; Muijsers, J.C.; Van Wolput, J.H.M.C.; Verhagen, C.P.J.; Niemantsverdriet, J.W. Basic Reaction Steps in the Sulfidation of Crystalline MoO3 to MoS2, as Studied by X-Ray Photoelectron and Infrared Emission Spectroscopy. J. Phys. Chem. 1996, 100, 14144–14150. [Google Scholar] [CrossRef]
- Tur, V.A.; Okotrub, A.V.; Shmakov, M.M.; Fedorovskaya, E.O.; Asanov, I.P.; Bulusheva, L.G. Functional Composition and Supercapacitor Properties of Graphite Oxide Reduced with Hot Sulfuric Acid. Phys. Status Solidi B 2013, 250, 2747–2752. [Google Scholar] [CrossRef]
- Nasir, A.; Khalid, S.; Yasin, T.; Mazare, A. A Review on the Progress and Future of TiO2/Graphene Photocatalysts. Energies 2022, 15, 6248. [Google Scholar] [CrossRef]
- Jankovský, O.; Šimek, P.; Nováček, M.; Luxa, J.; Sedmidubský, D.; Pumera, M.; Macková, A.; Mikšová, R.; Sofer, Z. Use of Deuterium Labelling—Evidence of Graphene Hydrogenation by Reduction of Graphite Oxide Using Aluminium in Sodium Hydroxide. RSC Adv. 2015, 5, 18733–18739. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, Z.; Yin, S.; Guo, Z.; Wang, S.; Feng, C. Biomass Carbon Micro/Nano-Structures Derived from Ramie Fibers and Corncobs as Anode Materials for Lithium-Ion and Sodium-Ion Batteries. Appl. Surf. Sci. 2016, 379, 73–82. [Google Scholar] [CrossRef]
- Sun, C.; Liu, M.; Wang, L.; Xie, L.; Zhao, W.; Li, J.; Liu, S.; Yan, D.; Zhao, Q. Revisiting Lithium-Storage Mechanisms of Molybdenum Disulfide. Chin. Chem. Lett. 2022, 33, 1779–1797. [Google Scholar] [CrossRef]
- Hou, M.; Qiu, Y.; Yan, G.; Wang, J.; Zhan, D.; Liu, X.; Gao, J.; Lai, L. Aging Mechanism of MoS2 Nanosheets Confined in N-Doped Mesoporous Carbon Spheres for Sodium-Ion Batteries. Nano Energy 2019, 62, 299–309. [Google Scholar] [CrossRef]
- Ghani, U.; Iqbal, N.; Li, J.; Aboalhassan, A.A.; Sun, B.; Liu, B.; Ullah, F.; Zeb, J.; Imtiaz, M.; Gu, J.; et al. Improved Na-Ion Kinetics of 1T MoS2 Nanopatterned Porous Hard Carbon as an Ultra-Long Life Anode. Electrochim. Acta 2022, 432, 141130. [Google Scholar] [CrossRef]
- Wang, K.; Hua, W.; Li, Z.; Wang, Q.; Kübel, C.; Mu, X. New Insight into Desodiation/Sodiation Mechanism of MoS2: Sodium Insertion in Amorphous Mo-S Clusters. ACS Appl. Mater. Interfaces 2021, 13, 40481–40488. [Google Scholar] [CrossRef] [PubMed]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
- Hou, J.; Yang, M.; Wang, D.; Zhang, J. Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between −40 and 60 °C. Adv. Energy Mater. 2020, 10, 1904152. [Google Scholar] [CrossRef]
- Shi, D.; Cui, Y.; Shen, X.; Gao, Z.; Ma, X.; Li, X.; Fang, Y.; Wang, S.; Fang, S. A Review of the Combined Effects of Environmental and Operational Factors on Lithium-Ion Battery Performance: Temperature, Vibration, and Charging/Discharging Cycles. RSC Adv. 2025, 15, 13272–13283. [Google Scholar] [CrossRef]
- Hao, S.; Shen, X.; Tian, M.; Yu, R.; Wang, Z.; Chen, L. Reversible Conversion of MoS2 upon Sodium Extraction. Nano Energy 2017, 41, 217–224. [Google Scholar] [CrossRef]
- Tian, X.; Du, L.; Yan, Y.; Wu, S. An Investigation into the Charge-Storage Mechanism of MnO@Graphite as Anode for Lithium-Ion Batteries at Low Temperature. ChemSusChem 2019, 6, 2248–2253. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lan, Q.; Yang, Z.; Lv, X.J. Multiple Phase N-Doped TiO2 Nanotubes/TiN/Graphene Nanocomposites for High Rate Lithium Ion Batteries at Low Temperature. J. Power Sources 2019, 423, 166–173. [Google Scholar] [CrossRef]
- Fan, H.H.; Li, H.H.; Guo, J.Z.; Zheng, Y.P.; Huang, K.C.; Fan, C.Y.; Sun, H.Z.; Li, X.F.; Wu, X.L.; Zhang, J.P. Target Construction of Ultrathin Graphitic Carbon Encapsulated FeS Hierarchical Microspheres Featuring Superior Low-Temperature Lithium/Sodium Storage Properties. J. Mater. Chem. A 2018, 6, 7997–8005. [Google Scholar] [CrossRef]
- Rakhmetova, A.; Belgibayeva, A.; Kalimuldina, G.; Nurpeissova, A.; Bakenov, Z. Free-Standing SnSe@C Nanofiber Anode Material for Low-Temperature Lithium-Ion Batteries. J. Power Sources Adv. 2023, 24, 100128. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, Q.; Wang, J.; Wang, T.; Xiang, W.; Li, J.; Yu, J.S. From 2D to 3D: WS2/MoS2 Heterostructure in-Situ Anchored on Ti3C2Tx MXene with Enhanced Ion/Electron Migration and Sodium Storage at −20 °C. Energy Storage Mater. 2024, 68, 103357. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, W.; Zhang, W.; Wong, K.W.; Wu, J.; Chen, T.; Huang, S. Ultrafine ZnSe Encapsulated in Nitrogen-Doped Porous Carbon Nanofibers for Superior Na-Ion Batteries with a Long Lifespan and Low-Temperature Performance. ACS Sustain. Chem. Eng. 2021, 9, 11705–11713. [Google Scholar] [CrossRef]
- Huang, K.C.; Guo, J.Z.; Li, H.H.; Fan, H.H.; Liu, D.H.; Zheng, Y.P.; Li, W.L.; Wu, X.L.; Zhang, J.P. Layer-Stacked Sb@graphene Micro/Nanocomposite with Decent Na-Storage, Full-Cell and Low-Temperature Performances. J. Alloys Compd. 2018, 731, 881–888. [Google Scholar] [CrossRef]
- Li, J.; Tang, S.; Li, Z.; Ding, Z.; Wang, T.; Wang, C. Cross-Linked Amorphous Potassium Titanate Nanobelts/Titanium Carbide MXene Nanoarchitectonics for Efficient Sodium Storage at Low Temperature. J. Colloid Interface Sci. 2023, 629, 461–472. [Google Scholar] [CrossRef]
- Wu, C.; Ou, J.Z.; He, F.; Ding, J.; Luo, W.; Wu, M.; Zhang, H. Three-Dimensional MoS2/Carbon Sandwiched Architecture for Boosted Lithium Storage Capability. Nano Energy 2019, 65, 104061. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Huang, S.; Zhang, Y.; Chen, Z. Integrated Design of Sandwich-like C@MoS2@C Nanospheres as Active Anode Material for Lithium-Ion Batteries. J. Mater. Sci. 2022, 57, 14948–14958. [Google Scholar] [CrossRef]
- Chen, H.; Song, T.; Tang, L.; Pu, X.; Li, Z.; Xu, Q.; Liu, H.; Wang, Y.G.; Xia, Y. In-Situ Growth of Vertically Aligned MoS2 Nanowalls on Reduced Graphene Oxide Enables a Large Capacity and Highly Stable Anode for Sodium Ion Storage. J. Power Sources 2020, 445, 227271. [Google Scholar] [CrossRef]
- Xie, X.; Makaryan, T.; Zhao, M.; Van Aken, K.L.; Gogotsi, Y.; Wang, G. MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1502161. [Google Scholar] [CrossRef]
Sample | Expected, wt% | XPS, wt% | TG, wt% | ||||||
---|---|---|---|---|---|---|---|---|---|
C | S | Mo | C | S | Mo | O | C | Mo + S | |
MoS2/rGO_600 | 25 | 30 | 45 | 33.2 | 26.3 | 31.4 | 9.1 | 31.6 | 68.4 |
MoS2/rGO_700 | 25 | 30 | 45 | 37.0 | 23.6 | 32.1 | 7.3 | 41.9 | 58.1 |
Sample | Temperature, °C | Specific Capacity (mAh/g) at Given Current Density (A/g) | Ref. | ||||
---|---|---|---|---|---|---|---|
0.1 | 0.5 | 1 | 2 | ||||
LIB | MoS2/rGO_600 | −20 | 763 | 458 | 322 | 245 | this work |
MoS2/rGO_700 | −20 | 510 | 279 | 200 | 144 | this work | |
MoS2/C | −20 | 775 | 583.2 | 491.8 | 342.8 | [26] | |
MoS2/G | −20 | ~700 | ~360 | − | − | [25] | |
MnO@Graphite | −25 | 210 | 26 | − | − | [57] | |
G/NTO-4 (TiO2@TiN/graphene-400 °C) | −20 | 265 | 202 | 185 | 166 | [58] | |
FeS@g-C | −20 | 624.3 (0.05 A/g) | 367.1 | 246.7 | 104.9 | [59] | |
SnSe@C | −20 | 420 | − | − | − | [60] | |
SIB | MoS2/rGO_600 | −20 | 290 | 151 | 100 | 53 | this work |
MoS2/rGO_700 | −20 | 272 | 163 | 118 | 76 | this work | |
WS2/MoS2/Ti3C2Tx MXene | −20 | 293.7 | 229.2 | 182.5 | 107.8 (3A/g) | [61] | |
ZnSe@NCNFs | −20 | 305.3 (0.02 A/g) | 264 | 236.7 | 181.8 | [62] | |
LS-Sb@G | −20 | 226.2 | − | − | − | [63] | |
a-KTiOx/Ti2CTx | −25 | 124.9 | 90.7 | − | 70.4 | [64] | |
µm-MoS2 | −30 | 213.8 (0.05 A/g) | − | − | − | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorfolomeeva, A.A.; Zaguzina, A.A.; Maksimovskiy, E.A.; Gusel’nikov, A.V.; Plyusnin, P.E.; Okotrub, A.V.; Bulusheva, L.G. Molybdenum Disulfide and Reduced Graphene Oxide Hybrids as Anodes for Low-Temperature Lithium- and Sodium-Ion Batteries. Nanomaterials 2025, 15, 824. https://doi.org/10.3390/nano15110824
Vorfolomeeva AA, Zaguzina AA, Maksimovskiy EA, Gusel’nikov AV, Plyusnin PE, Okotrub AV, Bulusheva LG. Molybdenum Disulfide and Reduced Graphene Oxide Hybrids as Anodes for Low-Temperature Lithium- and Sodium-Ion Batteries. Nanomaterials. 2025; 15(11):824. https://doi.org/10.3390/nano15110824
Chicago/Turabian StyleVorfolomeeva, Anna A., Alena A. Zaguzina, Evgeny A. Maksimovskiy, Artem V. Gusel’nikov, Pavel E. Plyusnin, Alexander V. Okotrub, and Lyubov G. Bulusheva. 2025. "Molybdenum Disulfide and Reduced Graphene Oxide Hybrids as Anodes for Low-Temperature Lithium- and Sodium-Ion Batteries" Nanomaterials 15, no. 11: 824. https://doi.org/10.3390/nano15110824
APA StyleVorfolomeeva, A. A., Zaguzina, A. A., Maksimovskiy, E. A., Gusel’nikov, A. V., Plyusnin, P. E., Okotrub, A. V., & Bulusheva, L. G. (2025). Molybdenum Disulfide and Reduced Graphene Oxide Hybrids as Anodes for Low-Temperature Lithium- and Sodium-Ion Batteries. Nanomaterials, 15(11), 824. https://doi.org/10.3390/nano15110824