Electrodeposition of Nanostructured Metals on n-Silicon and Insights into Rhodium Deposition
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Experimental Setup
3. Results and Discussion
3.1. Metals’ Selection
3.2. Cyclic Voltammetry Measurements and Characterization
3.3. Charge-Controlled Deposition
3.4. Multi-Cycle Charge-Controlled Deposition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sulka, G.D. Electrochemistry of Thin Films and Nanostructured Materials. Molecules 2023, 28, 4040. [Google Scholar] [CrossRef] [PubMed]
- Fukata, N.; Subramani, T.; Jevasuwan, W.; Dutta, M.; Bando, Y. Functionalization of Silicon Nanostructures for Energy-Related Applications. Small 2017, 13, 1701713. [Google Scholar] [CrossRef]
- Kuntyi, O.I.; Zozulya, G.I.; Shepida, M.V.; Nichkalo, S.I. Deposition of Nanostructured Metals on the Surface of Silicon by Galvanic Replacement: A Mini-Review. Vopr. Khimii Khimicheskoi Tekhnologii 2019, 2019, 74–82. [Google Scholar] [CrossRef]
- Azzaroni, O.; Fonticelli, M.; Schilardi, P.L.; Benítez, G.; Caretti, I.; Albella, J.M.; Gago, R.; Vázquez, L.; Salvarezza, R.C. Surface Nanopatterning of Metal Thin Films by Physical Vapour Deposition onto Surface-Modified Silicon Nanodots. Nanotechnology 2004, 15, S197–S200. [Google Scholar] [CrossRef]
- Abo Ghazala, M.S.; Othman, H.A.; Sharaf El-Deen, L.M.; Nawwar, M.A.; Kashyout, A.E.H.B. Fabrication of Nanocrystalline Silicon Thin Films Utilized for Optoelectronic Devices Prepared by Thermal Vacuum Evaporation. ACS Omega 2020, 5, 27633–27644. [Google Scholar] [CrossRef]
- Droopad, R.; Curless, J.A.; Yu, Z.; Jordan, D.C.; Liang, Y.; Overgaard, C.D.; Li, H.; Eschrich, T.; Craigo, B.; Eisenbeiser, K.W.; et al. Development of Integrated Heterostructures on Silicon by MBE. In Proceedings of the MBE 2002—2002 12th International Conference on Molecular Bean Epitaxy, San Francisco, CA, USA, 15–20 September 2002; Volume 251, pp. 45–46. [Google Scholar] [CrossRef]
- Sarkar, J. Sputtering Materials for VLSI and Thin Film Devices, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2000; ISBN 9780080947716. [Google Scholar]
- Thomann, A.L.; Vahlas, C.; Aloui, L.; Samelor, D.; Caillard, A.; Shaharil, N.; Blanc, R.; Millon, E. Conformity of Aluminum Thin Films Deposited onto Micro-Patterned Silicon Wafers by Pulsed Laser Deposition, Magnetron Sputtering, and CVD. Chem. Vap. Depos. 2011, 17, 366–374. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Kosbar, L.L.; Murray, C.E.; Copel, M.; Afzali, A. High-Mobility Ultrathin Semiconducting Films Prepared by Spin Coating. Nature 2004, 428, 299–303. [Google Scholar] [CrossRef]
- Srinivasan, K.; Kottantharayil, A. Aluminium Oxide Thin Film Deposited by Spray Coating for P-Type Silicon Surface Passivation. Sol. Energy Mater. Sol. Cells 2019, 197, 93–98. [Google Scholar] [CrossRef]
- Pasa, A.A.; Schwarzacher, W. Electrodeposition of Thin Films and Multilayers on Silicon. Phys. Status Solidi Appl. Res. 1999, 173, 73–84. [Google Scholar] [CrossRef]
- Pappaianni, G.; Giurlani, W.; Bonechi, M.; Calisi, N.; Cortigiani, B.; Bazzicalupi, C.; Caneschi, A.; Fontanesi, C.; Innocenti, M. Electrodeposition of MnAs-Based Thin-Film as a Possible Promising Candidate in Spintronics Applications. J. Electrochem. Soc. 2024, 171, 062502. [Google Scholar] [CrossRef]
- Foresti, M.L.; Milani, S.; Loglio, F.; Innocenti, M.; Pezzatini, G.; Cattarin, S. Ternary CdSxSe1-x Deposited on Ag(111) by ECALE: Synthesis and Characterization. Langmuir 2005, 21, 6900–6907. [Google Scholar] [CrossRef] [PubMed]
- Giurlani, W.; Giaccherini, A.; Calisi, N.; Zangari, G.; Salvietti, E.; Passaponti, M.; Caporali, S. Investigations on the Electrochemical Atomic Layer Growth of Bi2Se3 and the Surface Limited Deposition of Bismuth at the Silver Electrode. Materials 2018, 11, 1426. [Google Scholar] [CrossRef]
- Giurlani, W.; Giaccherini, A.; Salvietti, E.; Passaponti, M.; Comparini, A.; Morandi, V.; Liscio, F.; Cavallini, M.; Innocenti, M. Selective Electrodesorption-Based Atomic Layer Deposition (SEBALD) of Bismuth under Morphological Control. Electrochem. Soc. Interface 2018, 27, 77–81. [Google Scholar] [CrossRef]
- Giurlani, W.; Cavallini, M.; Picca, R.A.; Cioffi, N.; Passaponti, M.; Fontanesi, C.; Lavacchi, A.; Innocenti, M. Underpotential-Assisted Electrodeposition of Highly Crystalline and Smooth Thin Film of Bismuth. ChemElectroChem 2020, 7, 299–305. [Google Scholar] [CrossRef]
- Gregory, B.W.; Stickney, J.L. Electrochemical Atomic Layer Epitaxy (ECALE). J. Electroanal. Chem. 1991, 300, 543–561. [Google Scholar] [CrossRef]
- Vizza, M.; Giaccherini, A.; Giurlani, W.; Passaponti, M.; Cioffi, N.; Picca, R.A.; De Luca, A.; Fabbri, L.; Lavacchi, A.; Gambinossi, F.; et al. Successes and Issues in the Growth of Moad and MoSe2 on Ag(111) by the E-ALD Method. Metals 2019, 9, 122. [Google Scholar] [CrossRef]
- Ogata, Y.H.; Kobayashi, K.; Motoyama, M. Electrochemical Metal Deposition on Silicon. Curr. Opin. Solid State Mater. Sci. 2006, 10, 163–172. [Google Scholar] [CrossRef]
- Zhang, X.G. Electrochemistry of Silicon and Its Oxide; Springer: New York, NY, USA, 2001; ISBN 9780306465413. [Google Scholar]
- Electrical & Computer Engineering, Integrated Microfabrication Lab, Brigham Young University. Metal-Semiconductor Ohmic and Schottky Contacts. Available online: https://cleanroom.byu.edu/ohmic-schottky (accessed on 4 December 2023).
- Tung, R.T. Recent Advances in Schottky Barrier Concepts. Mater. Sci. Eng. R Reports 2001, 35, 1–138. [Google Scholar] [CrossRef]
- Sato, N. Electrocthemistry of Semiconductors. Tetsu-to-Hagane 1990, 76, 1423–1436. [Google Scholar] [CrossRef] [PubMed]
- Oskam, G.; Long, J.G.; Natarajan, A.; Searson, P.C. Electrochemical Deposition of Metals onto Silicon. J. Phys. D Appl. Phys. 1998, 31, 1927. [Google Scholar] [CrossRef]
- Giurlani, W.; Dell’Aquila, V.; Vizza, M.; Calisi, N.; Lavacchi, A.; Irrera, A.; Lo Faro, M.J.; Leonardi, A.A.; Morganti, D.; Innocenti, M. Electrodeposition of Nanoparticles and Continuous Film of CdSe on N-Si (100). Nanomaterials 2019, 9, 1504. [Google Scholar] [CrossRef] [PubMed]
- Giurlani, W.; Vizza, M.; Leonardi, A.A.; Lo Faro, M.J.; Irrera, A.; Innocenti, M. Optimization and Characterization of Electrodeposited Cadmium Selenide on Monocrystalline Silicon. Nanomaterials 2022, 12, 610. [Google Scholar] [CrossRef]
- Prod’Homme, P.; Maroun, F.; Cortès, R.; Allongue, P. Electrochemical Growth of Ultraflat Au(111) Epitaxial Buffer Layers on H-Si(111). Appl. Phys. Lett. 2008, 93, 171901. [Google Scholar] [CrossRef]
- Skachkov, D.; Liu, S.; Wang, Y.; Zhang, X.; Cheng, H. First-Principles Theory for Schottky Barrier Physics. Phys. Rev. B 2021, 104, 045429. [Google Scholar] [CrossRef]
- Muñoz, A.G. Electroplating of Rhodium/Si(111) Junctions for Solar Fuel Generation: Effects of Hydrogen Diffusion. J. Electrochem. Soc. 2014, 161, D571–D578. [Google Scholar] [CrossRef]
- Wasilewska, J.; Chmielarek, M.; Skupiński, W. Study of Rh/TiO2–SiO2 System in Photolytic Water Splitting. React. Kinet. Mech. Catal. 2021, 132, 1165–1192. [Google Scholar] [CrossRef]
- Dang, Q.; Liao, F.; Sun, Y.; Zhang, S.; Huang, H.; Shen, W.; Kang, Z.; Shi, Y.; Shao, M. Rhodium/Silicon Quantum Dot/Carbon Quantum Dot Composites as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction with Pt-like Performance. Electrochim. Acta 2019, 299, 828–834. [Google Scholar] [CrossRef]
- Song, Z.; Chang, H.; Zhu, W.; Xu, C.; Feng, X. Rhodium Nanoparticle-Mesoporous Silicon Nanowire Nanohybrids for Hydrogen Peroxide Detection with High Selectivity. Sci. Rep. 2015, 5, 7792. [Google Scholar] [CrossRef]
- Marot, L.; Schoch, R.; Steiner, R.; Thommen, V.; Mathys, D.; Meyer, E. Rhodium and Silicon System: II. Rhodium Silicide Formation. Nanotechnology 2010, 21, 365707. [Google Scholar] [CrossRef]
- Grätzel, M. Highly Efficient Nanocrystalline Photovoltaic Devices. Platin. Met. Rev. 1994, 38, 151–159. [Google Scholar] [CrossRef]
- Pillai, S.; Catchpole, K.R.; Trupke, T.; Zhang, G.; Zhao, J.; Green, M.A. Enhanced Emission from Si-Based Light-Emitting Diodes Using Surface Plasmons. Appl. Phys. Lett. 2006, 88, 161102. [Google Scholar] [CrossRef]
- Wang, F.; Chen, G.; Zhang, N.; Liu, X.; Ma, R. Engineering of Carbon and Other Protective Coating Layers for Stabilizing Silicon Anode Materials. Carbon Energy 2019, 1, 219–245. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, M.; Wang, J.; Zhou, X.; Qiang, X.; Guo, G.; Ren, X. Silicon Photonic Devices for Scalable Quantum Information Applications. Photonics Res. 2022, 10, A135. [Google Scholar] [CrossRef]
- Yalavarthi, R.; Yesilyurt, O.; Henrotte, O.; Kment, Š.; Shalaev, V.M.; Boltasseva, A.; Naldoni, A. Multimetallic Metasurfaces for Enhanced Electrocatalytic Oxidations in Direct Alcohol Fuel Cells. Laser Photonics Rev. 2022, 16, 2200137. [Google Scholar] [CrossRef]
- Ullah, A.; Wang, Y.-C.; Yeasmin, S.; Deng, Y.; Ren, J.; Shi, Y.; Liu, L.; Cheng, L.-J. Reconfigurable Photoinduced Terahertz Wave Modulation Using Hybrid Metal–Silicon Metasurface. Opt. Lett. 2022, 47, 2750. [Google Scholar] [CrossRef]
- Kern, W. Evolution of Silicon Wafer Cleaning Technology. Proc.-Electrochem. Soc. 1990, 90, 3–19. [Google Scholar] [CrossRef]
- Tian, F.; Yang, D.; Opila, R.L.; Teplyakov, A. V Applied Surface Science Chemical and Electrical Passivation of Si(111) Surfaces. Appl. Surf. Sci. 2012, 258, 3019–3026. [Google Scholar] [CrossRef]
- Innocenti, M.; Pezzatini, G.; Forni, F.; Foresti, M.L. CdS and ZnS Deposition on Ag(111) by Electrochemical Atomic Layer Epitaxy. J. Electrochem. Soc. 2001, 148, C357. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- X-Ray Photoelectron Spectroscopy (XPS) Reference Pages. Available online: http://www.xpsfitting.com/search/label/carbon (accessed on 10 January 2024).
- Susi, T.; Pichler, T.; Ayala, P. X-Ray Photoelectron Spectroscopy of Graphitic Carbon Nanomaterials Doped with Heteroatoms. Beilstein J. Nanotechnol. 2015, 6, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.; Stickle, W.; Sobol, P.; Kenneth, B. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation. Physical Electronics Division: Eden Prairie, MN, USA, 1992; ISBN 0962702625. [Google Scholar]
- Chris, W. The Open Quantum Materials Database. Available online: https://oqmd.org/ (accessed on 15 November 2023).
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies. npj Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Agrawal, A.; Jha, D.; Paul, A.; Liao, W.-K.; Choundhary, A. Formation Energy Predictor. Available online: http://info.eecs.northwestern.edu/ (accessed on 15 November 2023).
- Jha, D.; Ward, L.; Paul, A.; Liao, W.K.; Choudhary, A.; Wolverton, C.; Agrawal, A. ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition. Sci. Rep. 2018, 8, 17593. [Google Scholar] [CrossRef]
- Agrawal, A.; Meredig, B.; Wolverton, C.; Choudhary, A. A Formation Energy Predictor for Crystalline Materials Using Ensemble Data Mining. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 1276–1279. [Google Scholar] [CrossRef]
- Meredig, B.; Agrawal, A.; Kirklin, S.; Saal, J.E.; Doak, J.W.; Thompson, A.; Zhang, K.; Choudhary, A.; Wolverton, C. Combinatorial Screening for New Materials in Unconstrained Composition Space with Machine Learning. Phys. Rev. B-Condens. Matter Mater. Phys. 2014, 89, 094104. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Jain, A.; Ong, P.; Hautier, G.; Chen, W.; et al. Commentary: The Materials Project: A Materials Genome. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions. In Natl. Assoc. Corros. Eng. Cent. Beige d’Etude Corros. CEBELCOR; NACE: Brussels, Belgium, 1974; ISBN 0915567989. [Google Scholar]
- Palmstrøm, C.J. Contacts for Compound Semiconductors: Ohmic Type. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1581–1587. [Google Scholar] [CrossRef]
- Tu, K.N.; Thompson, R.D.; Tsaur, B.Y.; Tu, K.N.; Thompson, R.D.; Tsaur, B.Y. Low Schottky Barrier of Rareearth Silicide on NSi. Appl. Phys. Lett. 1981, 626, 6–9. [Google Scholar] [CrossRef]
- Herrero, E.; Buller, L.J.; Abruna, D. Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials. Chem. Rev. 2001, 101, 1897–1930. [Google Scholar] [CrossRef]
- Sarkar, S.; Sebastian, P.C. Inorganic Chemistry. Inorg. Chem. Front. 2018, 2018, 9. [Google Scholar] [CrossRef]
- Cheng, N.; Stambula, S.; Wang, D.; Banis, M.N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T.; Liu, L.; et al. Hydrogen Evolution Reaction. Nat. Commun. 2016, 7, 13638. [Google Scholar] [CrossRef]
- Zhu, L.; Lin, H.; Li, Y.; Liao, F.; Lifshitz, Y.; Sheng, M.; Lee, S. A Rhodium/Silicon Co-Electrocatalyst Design Concept to Surpass Platinum Hydrogen Evolution Activity at High Overpotentials. Nat. Commun. 2016, 7, 12272. [Google Scholar] [CrossRef]
- Lee, J.; Arrigan, D.W.M.; Silvester, D.S. Mechanical Polishing as an Improved Surface Treatment for Platinum Screen-Printed Electrodes. Sens. Bio-Sensing Res. 2016, 9, 38–44. [Google Scholar] [CrossRef]
- Michaelson, H.B. The Work Function of the Elements and Its Periodicity. J. Appl. Phys. 1977, 48, 4729–4733. [Google Scholar] [CrossRef]
- Tumelero, M.A.; Benetti, L.C.; Isoppo, E.; Faccio, R.; Zangari, G.; Pasa, A.A. Electrodeposition and Ab Initio Studies of Metastable Orthorhombic Bi2Se3: A Novel Semiconductor with Bandgap for Photovoltaic Applications. J. Phys. Chem. C 2016, 120, 11797–11806. [Google Scholar] [CrossRef]
- Lattice Constants for All the Elements in the Periodic Table. Available online: https://periodictable.com/Properties/A/LatticeConstants.html (accessed on 20 December 2023).
- Philipsen, H.; Jehoul, H.; Inoue, F.; Vandersmissen, K.; Yang, L.; Struyf, H.; van Dorp, D. Nucleation and Growth Kinetics of Electrodeposited Ni Films on Si(100) Surfaces. Electrochim. Acta 2017, 230, 407–417. [Google Scholar] [CrossRef]
- Philipsen, H.; Monnens, W. Immersion and Electrochemical Deposition of Ru on Si. Electrochim. Acta 2018, 274, 306–315. [Google Scholar] [CrossRef]
- Palladium, X-Ray Photoelectron Spectroscopy (XPS) Reference Pages. Available online: http://www.xpsfitting.com/2017/10/palladium.html (accessed on 10 January 2024).
- Platinum, X-Ray Photoelectron Spectroscopy (XPS) Reference Pages. Available online: http://www.xpsfitting.com/2012/01/platinum.html (accessed on 10 January 2024).
- Rhodium, X-Ray Photoelectron Spectroscopy (XPS) Reference Pages. Available online: http://www.xpsfitting.com/2016/12/rhodium.html (accessed on 10 January 2024).
- Kreyling, W.G.; Semmler-Behnke, M.; Chaudhry, Q. A Complementary Definition of Nanomaterial. Nanotoday 2010, 5, 165–168. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Skryshevsky, V.A.; Vdovenkova, T.A.; Tsyganova, A.I.; Gorostiza, P.; Sanz, F. Platinum Electroless Deposition on Silicon from Hydrogen Fluoride Solutions: Electrical Properties. J. Electrochem. Soc. 2001, 148, C528. [Google Scholar] [CrossRef]
Oxidation Number of the Metal in the Salt | Metal/Silicon Most Stable Stoichiometry | Number of Electrons Exchanged | Charge (µC) | Peak Potential | |
---|---|---|---|---|---|
Rh | 3+ | 1:1 | 3 | 256 + 15% | −0.425 V |
Pt | 2+ | 1:2 | 4 | 341 + 15% | −0.150 V |
Pd | 2+ | 1:2 | 4 | 341 + 15% | −0.170 V |
Ru | 3+ | 1:1 | 3 | 256 + 15% | −0.400 V |
Ni | 2+ | 1:2 | 4 | 341 + 15% | −0.375 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappaianni, G.; Montanari, F.; Bonechi, M.; Zangari, G.; Giurlani, W.; Innocenti, M. Electrodeposition of Nanostructured Metals on n-Silicon and Insights into Rhodium Deposition. Nanomaterials 2024, 14, 2042. https://doi.org/10.3390/nano14242042
Pappaianni G, Montanari F, Bonechi M, Zangari G, Giurlani W, Innocenti M. Electrodeposition of Nanostructured Metals on n-Silicon and Insights into Rhodium Deposition. Nanomaterials. 2024; 14(24):2042. https://doi.org/10.3390/nano14242042
Chicago/Turabian StylePappaianni, Giulio, Francesco Montanari, Marco Bonechi, Giovanni Zangari, Walter Giurlani, and Massimo Innocenti. 2024. "Electrodeposition of Nanostructured Metals on n-Silicon and Insights into Rhodium Deposition" Nanomaterials 14, no. 24: 2042. https://doi.org/10.3390/nano14242042
APA StylePappaianni, G., Montanari, F., Bonechi, M., Zangari, G., Giurlani, W., & Innocenti, M. (2024). Electrodeposition of Nanostructured Metals on n-Silicon and Insights into Rhodium Deposition. Nanomaterials, 14(24), 2042. https://doi.org/10.3390/nano14242042