Nanomaterials and Textiles
1. Introduction
2. Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Malucelli, G. Nanostructured Flame-Retardant Layer-by-Layer Architectures for Cotton Fabrics: The Current State of the Art and Perspectives. Nanomaterials 2024, 14, 858. https://doi.org/10.3390/nano14100858.
- Bencurova, E.; Chinazzo, A.; Kar, B.; Jung, M., Dandekar, T. How Far is the Nanocellulose Chip and Its Production in Reach? A Literature Survey. Nanomaterials 2024, 14, 1536. https://doi.org/10.3390/nano14181536.
- Tan, S.; Kraus, T.J.; Helling, M.R.; Mignon, R.K.; Basile, F.; Li-Oakey, K.D. Investigation on the Mass Distribution and Chemical Compositions of Various Ionic Liquids-Extracted Coal Fragments and Their Effects on the Electrochemical Performance of Coal-Derived Carbon Nanofibers (CCNFs). Nanomaterials 2021, 11, 664. https://doi.org/10.3390/nano11030664.
- Munir, M.U.; Mayer-Gall, T.; Gutmann, J.S.; Ali, W.; Etemad-Parishanzadeh, O.; Khanzada, H.; Mikucioniene, D. Development of Carbon-Nanodot-Loaded PLA Nanofibers and Study of Their Barrier Performance for Medical Applications. Nanomaterials 2023, 13, 1195. https://doi.org/10.3390/nano13071195.
- Dissanayake, N.S.L.; Pathirana, M.A.; Wanasekara, N.D.; Mahltig, B.; Nandasiri, G.K. Removal of Methylene Blue and Congo Red Using a Chitosan-Graphene Oxide-Electrosprayed Functionalized Polymeric Nanofiber Membrane. Nanomaterials 2023, 13, 1350. https://doi.org/10.3390/nano13081350.
- Sanchaniya, J.V.; Lasenko, I.; Kanukuntla, S.P.; Mannodi, A.; Viluma-Gudmona, A.; Gobins, V. Preparation and Characterization of Non-Crimping Laminated Textile Composites Reinforced with Electrospun Nanofibers. Nanomaterials 2023, 13, 1949. https://doi.org/10.3390/nano13131949.
- Morina, E.; Dotter, M.; Döpke, C.; Kola, I.; Spahiu, T.; Ehrmann, A. Homogeneity of Needleless Electrospun Nanofiber Mats. Nanomaterials 2023, 13, 2507. https://doi.org/10.3390/nano13182507.
- Pakolpakcil, A.; Kilic, A.; Draczynski, Z. Optimization of the Centrifugal Spinning Parameters to Prepare Poly(butylene succinate) Nanofibers Mats for Aerosol Filter Applications. Nanomaterials 2023, 13, 3150. https://doi.org/10.3390/nano13243150.
- Liu, J.; Dong, S.; Wang, C.; Liu, Y.; Pan, S.; Yin, Z. Research on Electric Field Homogenization in Radial Multi-Nozzle Electrospinning. Nanomaterials 2024, 14, 1199. https://doi.org/10.3390/nano14141199.
- Yust, B.G.; Rahaman Sk, A.; Kontsos, A.; George, B. Persistent Luminescent Nanoparticles-Loaded Filaments for Identification in the Visible and Infrared. Nanomaterials 2024, 14, 1414. https://doi.org/10.3390/nano14171414.
- Kanamori, M.; Hara, K.; Yamazoe, E.; Ito, T.; Tahara, K. Development of Polyvinyl Alcohol (PVA) Nanofibers Containing Cationic Lipid/siRNA Complexes via Electrospinning: The Impact of PVA Characterization. Nanomaterials 2024, 14, 1083. https://doi.org/10.3390/nano14131083.
- Dragar, C.; Roskar, R.; Kocbek, P. The Incorporated Drug Affects the Properties of Hydrophilic Nanofibers. Nanomaterials 2024, 14, 949. https://doi.org/10.3390/nano14110949.
References
- Yin, Y.; Talapin, D. The chemistry of functional nanomaterials. Chem. Soc. Rev. 2013, 42, 2484–2487. [Google Scholar] [CrossRef] [PubMed]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Salem, S.S.; Hammad, E.N.; Mohamed, A.A.; El-Dougdoug, W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2022, 13, 41. [Google Scholar]
- Mahltig, B.; Textor, T. Nanosols and Textiles; World Scientific: Singapore, 2008. [Google Scholar]
- Strand, E.A.; Frei, K.M.; Gleba, M.; Mannering, U.; Nosch, M.L.; Skals, I. Old textiles–new possibilities. Eur. J. Archaeol. 2010, 13, 149–173. [Google Scholar] [CrossRef]
- Schmidt, E.M. Kleidung/Mode Zwischen Konsum, Nachhaltigkeit und Globalisierung, 2nd ed.; Schneider Verlag Hohengehren GmbH: Baltmannsweiler, Germany, 2021. [Google Scholar]
- Lin, X.; Huang, Q. Smart nanomaterials for biosensing and therapy applications. Front. Bioeng. Biotechnol. 2023, 11, 1137508. [Google Scholar] [CrossRef]
- Longo, E.; de Almeida La Porta, F. Recent Advances in Complex Functional Materials, from Design to Application; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Saleem, H.; Zaidi, S.J. Sustainable use of nanomaterials in textiles and their environmental impact. Materials 2020, 13, 5134. [Google Scholar] [CrossRef]
- Rivero, P.J.; Urrutia, A.; Goicoechea, J.; Arregui, F.J. Nanomaterials for functional textiles and fibers. Nanoscale Res. Lett. 2015, 10, 501. [Google Scholar] [CrossRef]
- Andra, S.; Balu, S.K.; Jeevanandam, J.; Muthalagu, M. Emerging nanomaterials for antibacterial textile fabrication. Naunyn-Schmiedeberg Arch. Pharmacol. 2021, 394, 1355–1382. [Google Scholar] [CrossRef]
- Som, C.; Wick, P.; Krug, H.; Nowack, B. Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ. Int. 2011, 37, 1131–1142. [Google Scholar] [CrossRef]
- Bengalli, R.; Colantuoni, A.; Perelshtein, I.; Gedanken, A.; Collini, M.; Mantecca, P.; Fiandra, L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NanoImpact 2021, 21, 100282. [Google Scholar] [CrossRef]
- Yang, T.; Luo, J.; Nowack, B. Characterization of nanoplastics, fibrils, and microplastics released during washing and abrasion of polyester textiles. Environ. Sci. Technol. 2021, 55, 15873–15881. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Qamer, S.; Shahid, M.; Tomkova, B.; Khan, M.Z.; Militky, J.; Wiener, J.; Venkataraman, M. Micro-and Nanoplastics Produced from Textile Finishes: A Review. Langmuir 2024, 40, 17849–17867. [Google Scholar] [CrossRef] [PubMed]
- Alongi, J.; Malucelli, G. State of the art and perspectives on sol–gel derived hybrid architectures for flame retardancy of textiles. J. Mater. Chem. 2012, 22, 21805–21809. [Google Scholar] [CrossRef]
- Lin, D.; Zeng, X.; Li, H.; Lai, X.; Wu, T. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. J. Colloid Interface Sci. 2019, 533, 198–206. [Google Scholar] [CrossRef]
- Mahltig, B.; Fiedler, D.; Böttcher, H. Antimicrobial sol–gel coatings. J. Sol-Gel Sci. Technol. 2004, 32, 219–222. [Google Scholar] [CrossRef]
- Tomšič, B.; Simončič, B.; Orel, B.; Černe, L.; Tavčer, P.F.; Zorko, M.; Jerman, I.; Vilcnik, A.; Kovač, J. Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J. Sol-Gel Sci. Technol. 2008, 47, 44–57. [Google Scholar] [CrossRef]
- Mondal, S. Nanomaterials for UV protective textiles. J. Ind. Text. 2022, 51 (Suppl. S4), 5592S–5621S. [Google Scholar] [CrossRef]
- Klinkhammer, K.; Ratovo, K.; Heß, O.; Bendt, E.; Grethe, T.; Krieg, M.; Sturm, M.; Weide, T.; Mahltig, B. Reduction of radiation transmission through functionalization of textiles from man-made cellulosic fibers. Commun. Dev. Assem. Text. Prod. 2022, 3, 51–61. [Google Scholar] [CrossRef]
- Mirzaei, M.; Zarrebini, M.; Shirani, A.; Shanbeh, M.; Borhani, S. X-ray shielding by a novel garment woven with melt-spun monofilament weft yarn containing lead and tin particles. Text. Res. J. 2019, 89, 63–75. [Google Scholar] [CrossRef]
- Mahltig, B.; Günther, K.; Askani, A.; Bohnet, F.; Brinkert, N.; Kyosev, Y.; Weide, T.; Krieg, M.; Leisegang, T. X-ray-protective organic/inorganic fiber–along the textile chain from fiber production to clothing application. J. Text. Inst. 2017, 108, 1975–1984. [Google Scholar] [CrossRef]
- Abdelrahman, M.S.; Elhadad, S.S.; El-Naggar, M.E.; Gaffer, H.E.; Khattab, T.A. Ultraviolet-sensitive photoluminescent spray-coated textile. Coatings 2022, 12, 1686. [Google Scholar] [CrossRef]
- Shahzadi, N.; Yousaf, M.I.; Ashraf, M. Room temperature stimulated long-persistent phosphorescence of polyurethane/SrAl2O4: Eu2+, Dy3+ composite material for textile-based applications. Ceram. Int. 2024, 50, 45566–45573. [Google Scholar] [CrossRef]
- Ren, S.; Liu, B.; Wang, M.; Han, G.; Zhao, H.; Zhang, Y. Highly bright carbon quantum dots for flexible anti-counterfeiting. J. Mater. Chem. C 2022, 10, 11338–11346. [Google Scholar] [CrossRef]
- Mahltig, B.; Greiler, L.C.; Haase, H. Microwave assisted conversion of an amino acid into a fluorescent solution. Acta Chim. Slov. 2018, 65, 865–874. [Google Scholar]
- Mirjalili, M.; Zohoori, S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostruct. Chem. 2016, 6, 207–213. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.; Ding, Y.; Agarwal, S.; Greiner, A.; Duan, G. A review of smart electrospun fibers toward textiles. Compos. Commun. 2020, 22, 100506. [Google Scholar] [CrossRef]
- Goyal, S.; Dotter, M.; Diestelhorst, E.; Storck, J.L.; Ehrmann, A.; Mahltig, B. Extraction of keratin from wool and its use as biopolymer in film formation and in electrospinning for composite material processing. J. Eng. Fibers Fabr. 2022, 17, 15589250221090499. [Google Scholar] [CrossRef]
- Pathirana, M.A.; Dissanayake, N.S.; Wanasekara, N.D.; Mahltig, B.; Nandasiri, G.K. Chitosan-graphene oxide dip-coated polyacrylonitrile-ethylenediamine electrospun nanofiber membrane for removal of the dye stuffs methylene blue and congo red. Nanomaterials 2023, 13, 498. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahltig, B.; Ehrmann, A. Nanomaterials and Textiles. Nanomaterials 2024, 14, 1900. https://doi.org/10.3390/nano14231900
Mahltig B, Ehrmann A. Nanomaterials and Textiles. Nanomaterials. 2024; 14(23):1900. https://doi.org/10.3390/nano14231900
Chicago/Turabian StyleMahltig, Boris, and Andrea Ehrmann. 2024. "Nanomaterials and Textiles" Nanomaterials 14, no. 23: 1900. https://doi.org/10.3390/nano14231900
APA StyleMahltig, B., & Ehrmann, A. (2024). Nanomaterials and Textiles. Nanomaterials, 14(23), 1900. https://doi.org/10.3390/nano14231900