Effect of Nanographene Coating on the Seebeck Coefficient of Mesoporous Silicon
Abstract
1. Introduction
2. Materials and Methods
2.1. Electochemical Etching
2.2. Graphene Coating
2.3. Seebeck Coeffcient Measurement using Homemade ZT Meter
3. Results and Discussion
3.1. Physico-Chemical Analysis of PSi and G-PSi
3.1.1. Characterization of the Porosity in PSi
3.1.2. Porosity in G-PSi
3.2. Raman and XPS Analyses
3.3. UPS Analysis for Seebeck Determination
3.4. ZT Meter Design for Seebeck Measurement
3.5. Seebeck Coeffcient Values of PSi and G-PSi
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halimaoui, A. Determination of the specific surface area of porous silicon from its etch rate in HF solutions. Surf. Sci. 1994, 306, L550–L554. [Google Scholar] [CrossRef]
- Amin-Chalhoub, E.; Semmar, N.; Coudron, L.; Gautier, G.; Boulmer-Leborgne, C.; Petit, A.; Gaillard, M.; Mathias, J.; Millon, E. Thermal conductivity measurement of porous silicon by the pulsed-photothermal method. J. Phys. D Appl. Phys. 2011, 44, 355401. [Google Scholar] [CrossRef]
- Acquaroli, L.N.; Brondino, A.; Schmidt, J.A.; Arce, R.D.; Koropecki, R.R. Infrared study of the oxidation of porous silicon: Evidence of surface modes. Phys. Status Solidi C 2009, 6, 1546–1550. [Google Scholar] [CrossRef]
- Dhanekar, S.; Jain, S. Porous silicon biosensor: Current status. Biosens. Bioelectron. 2013, 41, 54–64. [Google Scholar] [CrossRef]
- Rauscher, M.; Spohn, H. Porous silicon formation and electropolishing. Phys. Rev. E 2001, 64, 031604. [Google Scholar] [CrossRef]
- Minnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Tang, M.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.; Gogna, P. New Directions for Nanoscale Thermoelectric Materials Research. MRS Online Proc. Libr. 2006, 886, 101. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Tang, M.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Hippalgaonkar, K.; Huang, B.; Chen, R.; Sawyer, K.; Ercius, P.; Majumdar, A. Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett. 2010, 10, 4341–4348. [Google Scholar] [CrossRef]
- De Boor, J.; Geyer, N.; Wittemann, J.V.; Gösele, U.; Schmidt, V. Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotechnolog 2010, 21, 095302. [Google Scholar] [CrossRef]
- Tang, J.; Wang, H.T.; Lee, D.H.; Fardy, M.; Huo, Z.; Russell, T.P.; Yang, P. Holey Silicon as an Efficient Thermoelectric Material. Nano Lett. 2010, 10, 4279–4283. [Google Scholar] [CrossRef]
- Yu, J.K.; Mitrovic, S.; Tham, D.; Varghese, J.; Heath, J.R. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 2010, 5, 718–721. [Google Scholar] [CrossRef]
- Canham, L. Handbook of Porous Silicon, 1st ed.; Springer: Cham, Switzerland, 2014; p. 1017. [Google Scholar] [CrossRef]
- Gautier, G.; Kouassi, S. Integration of porous silicon in microfuel cells: A review. Int. J. Energy Res. 2015, 39, 1–25. [Google Scholar] [CrossRef]
- Godart, C. Aspects Théoriques en Thermoélectricité. Techniques de l’Ingénieur. 2009. Available online: https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/materiaux-actifs-et-intelligents-42126210/materiaux-a-effets-thermoelectriques-n1500/ (accessed on 3 January 2023).
- Nadtochiy, A.; Kuryliuk, V.; Strelchuk, V.; Korotchenkov, O.; Li, P.W.; Lee, S.W. Enhancing the Seebeck effect in Ge/Si through the combination of interfacial design features. Sci. Rep. 2019, 9, 16335. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Salleh, F. Influence of heavy doping on Seebeck coefficient in silicon-on-insulator. Appl. Phys. Lett. 2010, 96, 012106. [Google Scholar] [CrossRef]
- Geballe, T.H.; Hull, G.W. Seebeck Effect in Silicon. Phys. Rev. 1955, 98, 940–947. [Google Scholar] [CrossRef]
- Ohishi, Y.; Xie, J.; Miyazaki, Y.; Aikebaier, Y.; Muta, H.; Kurosaki, K.; Yamanaka, S.; Uchida, N.; Tada, T. Thermoelectric properties of heavily boron- and phosphorus-doped silicon. Jpn. J. Appl. Phys. 2015, 54, 071301. [Google Scholar] [CrossRef]
- Srivastava, D.; Norman, C.; Azough, F.; Ekren, D.; Chen, K.; Reece, M.J.; Kinloch, I.A.; Freer, R. Anisotropy and enhancement of thermoelectric performance of Sr 0.8 La 0.067 Ti 0.8 Nb 0.2 O 3−δ ceramics by graphene additions. J. Mater. Chem. A 2019, 7, 24602–24613. [Google Scholar] [CrossRef]
- Ekren, D.; Cao, J.; Azough, F.; Kepaptsoglou, D.; Ramasse, Q.; Kinloch, I.A.; Freer, R. Controlling the Thermoelectric Behavior of La-Doped SrTiO3 through Processing and Addition of Graphene Oxide. ACS Appl. Mater. Interfaces 2022, 14, 53711–53723. [Google Scholar] [CrossRef]
- Khardani, M.; Bouaïcha, M.; Dimassi, W.; Zribi, M.; Aouida, S.; Bessaïs, B. Electrical conductivity of free-standing mesoporous silicon thin films. Thin Solid Films 2006, 495, 243–245. [Google Scholar] [CrossRef]
- Sauze, S.; Aziziyan, M.; Brault, P.; Kolhatkar, G.; Ruediger, A.; Korinek, A.; Machon, D.; Arès, R.; Boucherif, A. Integration of 3D nanographene into mesoporous germanium. Nanoscale 2020, 12, 23984–23994. [Google Scholar] [CrossRef] [PubMed]
- Boucherif, A.R.; Boucherif, A.; Kolhatkar, G.; Ruediger, A.; Arès, R. Graphene-Mesoporous Si Nanocomposite as a Compliant Substrate for Heteroepitaxy. Small 2017, 13, 1603269. [Google Scholar] [CrossRef] [PubMed]
- Linseis, V.; Völklein, F.; Reith, H.; Nielsch, K.; Woias, P. Advanced platform for the in-plane ZT measurement of thin films. Rev. Sci. Instrum. 2018, 89, 015110. [Google Scholar] [CrossRef] [PubMed]
- Melhem, A.; Rogé, V.; Dai Huynh, T.T.; Stolz, A.; Talbi, A.; Tchiffo-Tameko, C.; Lecas, T.; Boulmer-Leborgne, C.; Millon, E.; Semmar, N. Laser-based setup for simultaneous measurement of the Seebeck coefficient and electrical conductivity for bulk and thin film thermoelectrics. Rev. Sci. Instrum. 2018, 89, 113901. [Google Scholar] [CrossRef] [PubMed]
- Valalaki, K.; Benech, P.; Nassiopoulou, A.G. High Seebeck Coefficient of Porous Silicon: Study of the Porosity Dependence. Nanoscale Res. Lett. 2016, 11, 201. [Google Scholar] [CrossRef]
- Bioud, Y.A.; Boucherif, A.; Belarouci, A.; Paradis, E.; Fafard, S.; Aimez, V.; Drouin, D.; Arès, R. Fast growth synthesis of mesoporous germanium films by high frequency bipolar electrochemical etching. Electrochim. Acta 2017, 232, 422–430. [Google Scholar] [CrossRef]
- Basu, S.; Lee, B.J.; Zhang, Z.M. Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature. J. Heat Transf. 2010, 132, 023301. [Google Scholar] [CrossRef]
- Melhem, A.; Defforge, T.; Meneses, D.S.; Andreazza-Vignolle, C.; Gautier, G.; Semmar, N. Structural, Optical, and Thermal Analysis of n-Type Mesoporous Silicon Prepared by Electrochemical Etching. J. Phys. Chem. C 2015, 119, 21443–21451. [Google Scholar] [CrossRef]
- Melhem, A.; Meneses, D.S.; Andreazza-Vignolle, C.; Defforge, T.; Gautier, G.; Sauldubois, A.; Semmmar, N. Structural, Optical, and Thermophysical Properties of Mesoporous Silicon Layers: Influence of Substrate Characteristics. J. Phys. Chem. C 2017, 121, 7821–7828. [Google Scholar] [CrossRef]
- Kuntyi, O.; Zozulya, G.; Shepida, M. Porous Silicon Formation by Electrochemical Etching. Adv. Mater. Sci. Eng. 2022, 2022, 1482877. [Google Scholar] [CrossRef]
- Lascaud, J.; Defforge, T.; Certon, D.; Valente, D.; Gautier, G. In-depth porosity control of mesoporous silicon layers by an anodization current adjustment. J. Appl. Phys. 2017, 122, 214903. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Sscardaci, C.; Casiraghi, C.; Lazzeri, M.; Mauri, M.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Merlen, A.; Buijnsters, J.G.; Pardanaud, C. A guide to and review of the use of Multiwavelength Raman Spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons. Coatings 2017, 7, 153. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Matthews, M.J.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Endo, M. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 1999, 59, R6585–R6588. [Google Scholar] [CrossRef]
- Petsagkourakis, I.; Pavlopoulou, E.; Cloutet, E.; Chen, Y.F.; Liu, X.; Fahlman, M.; Berggren, M.; Crispin, X.; Dilhaire, S.; Fleury, G.; et al. Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism. Org. Electron. 2018, 52, 335–341. [Google Scholar] [CrossRef]
- Chien, C.S.C.; Chang, H.M.; Lee, W.T.; Tang, M.R.; Wu, C.H.; Lee, S.C. High performance MoS2 TFT using graphene contact first process. AIP Adv. 2017, 7, 085018. [Google Scholar] [CrossRef]
- Zhang, F.; Klein, C.; Longhi, E.; Barlow, S.; Marder, S.R.; Sarusi, G.; Kahn, A. Molecular-Reductant-Induced Control of a Graphene–Organic Interface for Electron Injection. Chem. Mater. 2019, 31, 6624–6632. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.J.; Bocklund, B.; Shang, S.L.; Zhou, B.C.; Liu, Z.K.; Chen, L.Q. First-principles thermodynamic theory of Seebeck coefficients. Phys. Rev. B 2018, 98, 224101. [Google Scholar] [CrossRef]
- Jonson, M.; Mahan, G.D. Mott’s formula for the thermopower and the Wiedemann-Franz law. Phys. Rev. B 1980, 21, 4223–4229. [Google Scholar] [CrossRef]
- Perrot, S. Semi-Metallic Polymers for Thermoelectric Applications. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2021. [Google Scholar]
- Mulenko, S.A.; Stefan, N.; Len, E.G.; Skoryk, M.A.; Popov, V.M.; Gudymenko, O.Y. Laser synthesis of copper oxides 2D structures with high Seebeck coefficient and high thermoelectric figure of merit. J. Mater Sci. Mater. Electron. 2021, 32, 17123–17135. [Google Scholar] [CrossRef]
- Sauze, S. Synthèse et Caractérisation de Nanocomposites à Base de Silicium ou de Germanium Mésoporeux Carbonisés pour des Applications Thermoélectriques. Ph.D. Thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 2021. [Google Scholar]
- Wu, F.; Song, H.; Jia, J.; Hu, X. Effects of Ce, Y, and Sm doping on the thermoelectric properties of Bi2Te3 alloy. Prog. Nat. Sci. Mater. Int. 2013, 23, 408–412. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, P.; Li, Q.; Tang, G.; Zhang, T.; Chen, D.; Qian, Q. Enhanced N-Type Bismuth-Telluride-Based Thermoelectric Fibers via Thermal Drawing and Bridgman Annealing. Materials 2022, 15, 5331. [Google Scholar] [CrossRef]
- Han, M.K.; Jin, Y.; Lee, D.H.; Kim, S.J. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms. Materials 2017, 10, 1235. [Google Scholar] [CrossRef]
- Burkov, A.T.; Heinrich, A.; Konstantinov, P.P.; Nakama, T.; Yagasaki, K. Experimental set-up for thermopower and resistivity measurements at 100–1300 K. Meas. Sci. Technol. 2001, 12, 264–272. [Google Scholar] [CrossRef]
- Dörling, B.; Zapata-Arteaga, O.; Campoy-Quiles, M. A setup to measure the Seebeck coefficient and electrical conductivity of anisotropic thin-films on a single sampl. Rev. Sci. Instrum. 2020, 91, 105111. [Google Scholar] [CrossRef]
- Asheghi, M.; Kurabayashi, K.; Kasnavi, R.; Goodson, K.E. Thermal conduction in doped single-crystal silicon films. J. Appl. Phys. 2002, 91, 5079–5088. [Google Scholar] [CrossRef]
- Périchon, S.; Lysenko, V.; Roussel, P.; Remaki, B.; Champagnon, B.; Barbier, D.; Pinard, P. Technology and micro-Raman characterization of thick meso-porous silicon layers for thermal effect microsystems. Sens. Actuators A Phys. 2000, 85, 335–339. [Google Scholar] [CrossRef]
- Sidhu, L.S.; Kosteski, T.; Zukotynski, S. Infrared vibration spectra of hydrogenated, deuterated, and tritiated amorphous silicon. J. Appl. Phys. 1999, 85, 2574. [Google Scholar] [CrossRef]
- Lüpke, G.; Tolk, N.H.; Feldman, L.C. Vibrational lifetimes of hydrogen in silicon. J. Appl. Phys. 2003, 93, 2317–2336. [Google Scholar] [CrossRef]
- Singh, V.; Yu, Y.; Sun, Q.C.; Korgel, B.; Nagpal, P. Pseudo-direct bandgap transitions in silicon nanocrystals: Effects on optoelectronics and thermoelectrics. Nanoscale 2014, 6, 14643–14647. [Google Scholar] [CrossRef] [PubMed]
- Boukai, A.I.; Bunimovich, Y.; Tahir-Khali, J.; Goddard, W.A., III; Heath, J.R. Silicon nanowires as efficient thermoelectric mate. Nature 2008, 451, 168–171. [Google Scholar] [CrossRef] [PubMed]
Etching
Duration (min) | Mesoporous Layer Thicknesses (µm) | Porosity by FTIR (%) | Porosity by SEM
(%) | Sample |
---|---|---|---|---|
0 | 0 | 0 | 0 | Si |
5 | 20 | 51 ± 1 | 51 ± 1 | PSi-1 |
10 | 30 | 52 ± 2 | 49 ± 1 | PSi-2 |
25 | 55 | 53 ± 3 | 50 ± 1 | PSi-3 |
30 | 60 | 53 ± 3 | 52 ± 2 | PSi-4 |
35 | 70 | 50 ± 1 | 50 ± 1 | PSi-5 |
40 | 90 | 52 ± 2 | 51 ± 1 | PSi-6 |
50 | 115 | 50 ± 1 | 49 ± 1 | PSi-7 |
60 | 135 | 49 ± 1 | 55 ± 5 | PSi-8 |
90 | 160 | 49 ± 1 | 54 ± 4 | PSi-9 |
10 | 30 | - | 47 ± 3 | G-PSi-2 |
25 | 55 | - | 47 ± 3 | G-PSi-3 |
35 | 70 | - | 48 ± 2 | G-PSi-5 |
60 | 135 | - | 49 ± 1 | G-PSi-8 |
90 | 160 | - | 51 ± 1 | G-PSi-9 |
Sample | Pores Density (pores/µm2) | Average of Pores Diameter (nm) |
---|---|---|
PSi-2 | 4376.7 ± 21.4 | 12.0 ± 0.5 |
PSi-3 | 3284.7 ± 18.2 | 15.7 ± 0.6 |
PSi-5 | 2873.6 ± 17.5 | 17.4 ± 0.6 |
PSi-7 | 2439.0 ± 13.3 | 20.5 ± 1.5 |
PSi-8 | 1547.3 ± 10.8 | 25.5 ± 1.9 |
Material | Dopant | Thickness (µm) | Dopant Rate (cm−3) | S (µV/K) |
---|---|---|---|---|
Bi2Te3 | N | 3000 | 1018 | −175 ± 10 (T = 350 K) |
Bi2Te3 [49] | N | 2000 | not indicated | −140 (T = 350 K) |
Bi2Te3 [50] | N | not indicated | not indicated | −160 (T = 325 K) |
Bi2Te3 [51] | N | not indicated | 3–4 × 1019 | −175 (T = 350 K) |
Cu | undoped | 450 | undoped | 1.5 ± 0.5 |
Cu [52] | undoped | not indicated | undoped | 2–3 |
Cu [53] | undoped | not indicated | undoped | 2 ± 1 |
Si | P/p+ | 500 | 1020—1021 | 100 ± 15 |
Si [18] | P/p+ | not indicated | 1.2 × 1020 | 170 |
Si [17] | P/p+ | not indicated | 1020–1021 | 150 |
Si [16] | P/p+ | not indicated | 1020–1021 | 130 |
PSi-1–PSi-9 | P | 20–160 | - | 400 ± 15 – 792 ± 15 |
PSi [27] | P | 120 | - | 917 |
PSi [27] | P | 100 | - | 903 |
PSi [27] | P | 100 | - | 636 |
G-PSi-2–G-PSi-9 | P | 30–160 | - | 110 ± 15 –125 ± 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nar, S.; Stolz, A.; Machon, D.; Bourhis, E.; Andreazza, P.; Boucherif, A.; Semmar, N. Effect of Nanographene Coating on the Seebeck Coefficient of Mesoporous Silicon. Nanomaterials 2023, 13, 1254. https://doi.org/10.3390/nano13071254
Nar S, Stolz A, Machon D, Bourhis E, Andreazza P, Boucherif A, Semmar N. Effect of Nanographene Coating on the Seebeck Coefficient of Mesoporous Silicon. Nanomaterials. 2023; 13(7):1254. https://doi.org/10.3390/nano13071254
Chicago/Turabian StyleNar, Sibel, Arnaud Stolz, Denis Machon, Eric Bourhis, Pascal Andreazza, Abderraouf Boucherif, and Nadjib Semmar. 2023. "Effect of Nanographene Coating on the Seebeck Coefficient of Mesoporous Silicon" Nanomaterials 13, no. 7: 1254. https://doi.org/10.3390/nano13071254
APA StyleNar, S., Stolz, A., Machon, D., Bourhis, E., Andreazza, P., Boucherif, A., & Semmar, N. (2023). Effect of Nanographene Coating on the Seebeck Coefficient of Mesoporous Silicon. Nanomaterials, 13(7), 1254. https://doi.org/10.3390/nano13071254