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Abstract: Nanographene–mesoporous silicon (G-PSi) composites have recently emerged as a promis-
ing class of nanomaterials with tuneable physical properties. In this study, we investigated the impact
of nanographene coating on the Seebeck coefficient of mesoporous silicon (PSi) obtained by varying
two parameters: porosity and thickness. To achieve this, an electrochemical etching process on p +
doped Si is presented for the control of the parameters (thicknesses varying from 20 to 160 µm, and
a porosity close to 50%), and for nanographene incorporation through chemical vapor deposition.
Raman and XPS spectroscopies confirmed the presence of nanographene on PSi. Using a homemade
ZT meter, the Seebeck coefficient of the p + doped Si matrix was evaluated at close to 100 ± 15 µV/K
and confirmed by UPS spectroscopy analysis. Our findings suggest that the Seebeck coefficient of
the porous Si can be measured independently from that of the substrate by fitting measurements on
samples with a different thickness of the porous layer. The value of the Seebeck coefficient for the
porous Si is of the order of 750 ± 40 µV/K. Furthermore, the incorporation of nanographene induced
a drastic decrease to approximately 120 ± 15 µV/K, a value similar to that of its silicon substrate.

Keywords: mesoporous silicon; Seebeck coefficient; nanographene incorporation; electrochemical
etching

1. Introduction

Silicon-based nanomaterials such as porous silicon have been increasingly investiga-
tion in recent years due to the properties they acquire through nanostructuring processes.
These lead to significant improvements in several targeted properties, including the factor
of merit (ZT) for thermoelectric concerns [1–8]. Different methods are used to nanostructure
silicon substrate, from silicon nanowires [9,10] to patterned silicon thin films [11,12]. As
reported in the literature, electrochemical etching is one of the easiest, fastest, and most
versatile processes to achieve scalable nanostructures. These materials were first synthe-
sized in 1956 by Uhlir et al. [13] and according to the International Union of Pure and
Applied Chemistry (IUPAC), three main morphologies exist for the resulting porous layer
depending on the pore diameter Dp: microporous (Dp < 2 nm), mesoporous (2 nm < Dp <
50 nm), and macroporous (Dp > 50 nm). These size distributions are strongly correlated
to the experimental conditions such as dopant and concentration, electrolyte composition,
concentration of the hydrofluoric acid, etc. [12,13].
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Microporous or macroporous morphologies are observed for low-doped p- or n-
type substrates [13,14]. Highly doped silicon (with a carrier concentration from 1019 to
1021 cm−3) promotes a mesoporous (PSi) morphology. It demonstrates a good compromise
of the three properties that are useful in thermoelectric materials, namely, the Seebeck
coefficient S, which is determined by the measurement of the ratio between the induced
electric potential variation (∆U) and the temperature difference (∆T), electrical conductivity
σ (or equivalent power factor σS2), and thermal conductivity k [15]. In this doping range,
the Seebeck coefficient values for PSi are evaluated at up to 700 µV/K versus Seebeck
coefficient values of 130–170 µV/K for bulk crystalline silicon [16–18]. Low doping of
silicon of the order of 1018 cm−3 can demonstrate a Seebeck coefficient of 660 µV/K [19]
while mitigating the other parameters, leading to low ZT values.

Recent works have focused on incorporating graphene into matrices such as semi-
conductor ceramics [20,21]. This incorporation is interesting in combination with porous
semiconductors to improve their electronic properties, especially the electrical conductivity,
which is initially lowered by nanostructuring [22] without increasing the thermal conduc-
tivity. Nanographene incorporation has already been achieved due to the chemical vapor
deposition (CVD) method, as recently described by Sauze et al. [23] on porous germanium
and by Boucherif et al. [24] on porous silicon.

Different commercial devices called ZT meters are widely available for characterizing
several kinds of materials and surfaces for S measurement. Among these devices, the two
large, existing families are laser-based [25,26] and temperature gradient devices [27]. In the
case of the laser devices, in view of the configuration, the measurements are made only
in the plane of the surface. The use of a CO2 laser in the work of Melhem et al. [26] was
interesting for in-plane S measurements; however, since silicon is transparent in this range,
in-depth direct measurements will not be suitable. As PSi is an anisotropic layer with
branched columnar pores on which surface and depth properties are different, a more spe-
cific device must be designed to determine the out-of-plane properties. Thus, a homemade
setup was designed and used to obtain Seebeck measurements in both a nanographene
mesoporous Si matrix (G-PSi) and PSi. In order to correlate the Seebeck behavior with the
effect of the nanographene insertion, morphological, structural and chemical characteriza-
tions were systematically conducted using scanning electron microscopy (SEM) and X-ray
photoelectron (XPS), ultraviolet photoelectron (UPS), and Raman spectroscopies.

2. Materials and Methods
2.1. Electochemical Etching

Mesoporous Si samples were fabricated through the anodizing process of p-type
boron-doped (100)-oriented silicon (Si) wafers (resistivity ≤ 0.005 Ω.cm) (WaferPro, Santa
Clara, CA, USA). An electrochemical cell using a Si wafer as a working electrode was used
to porosify the substrate. This cell was made of Teflon, with a copper electrode as the
back contact of the wafer (insulated from the electrolyte) and a platinum counter electrode.
The electrolyte was hydrofluoric acid (49%), it had an and ethanol in a ratio of 1:1 (v/v).
The current density used was 100 mA/cm2. The etching was performed under a pulsed
current. Between each etching sequence of 10 s, a rest time (during which no current was
imposed) of 10 s was necessary to obtain thick layers. By varying the total etching duration
(Figure 1a), different thicknesses of porous layers were obtained (Table 1).
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Figure 1. (a) Electrochemical etching step and (b) graphene coating by CVD. 
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Figure 1. (a) Electrochemical etching step and (b) graphene coating by CVD.

Table 1. Electrochemical etching process characteristics.

Etching
Duration (min)

Mesoporous Layer
Thicknesses (µm)

Porosity by
FTIR (%)

Porosity by SEM
(%) Sample

0 0 0 0 Si

5 20 51 ± 1 51 ± 1 PSi-1
10 30 52 ± 2 49 ± 1 PSi-2
25 55 53 ± 3 50 ± 1 PSi-3
30 60 53 ± 3 52 ± 2 PSi-4
35 70 50 ± 1 50 ± 1 PSi-5
40 90 52 ± 2 51 ± 1 PSi-6
50 115 50 ± 1 49 ± 1 PSi-7
60 135 49 ± 1 55 ± 5 PSi-8
90 160 49 ± 1 54 ± 4 PSi-9

10 30 - 47 ± 3 G-PSi-2
25 55 - 47 ± 3 G-PSi-3
35 70 - 48 ± 2 G-PSi-5
60 135 - 49 ± 1 G-PSi-8
90 160 - 51 ± 1 G-PSi-9

2.2. Graphene Coating

Using CVD, the mesoporous structure was covered by nanographene, similar to [23,24],
i.e., the porous material was infiltrated by acetylene (by the addition of gas in the tubu-
lar furnace) and then annealed to 1023 K (Figure 1b). Details of the different steps are
provided as supplementary information (Figure S1). This resulted in a graphene-based
nanocomposite.

2.3. Seebeck Coeffcient Measurement using Homemade ZT Meter

A ZT meter device waas been designed at the GREMI laboratory to determine the
Seebeck coefficient of complex structures such as PSi and G-PSi. The description of our
device is detailed in Section 3.4.

3. Results and Discussion
3.1. Physico-Chemical Analysis of PSi and G-PSi
3.1.1. Characterization of the Porosity in PSi

In order to determine the porosity of the different samples, Fourier transform infrared
(FTIR) spectroscopy was used according to the methodology developed by Bioud et al. [28].
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The refractive index np allows for the determination of the porosity p of the porous material
according to:

p =

(
np

2/3 − nsubstrate
2/3

)
(
1 − nsubstrate

2/3
) , (1)

where, in our case, nsubstrate = nsilicon ~ 2,2 at 300 K, as cited in Ref. [29] for p-doped silicon
with a dopant rate of approximately 1020–1021 cm−3 and at λ = 5.5 µm. The refractive index
of the porous material was calculated from the FTIR spectra in the Supplementary Informa-
tion (Figure S2). For instance, in the case of 30 µm, np = 1.7, leading to p = 52%. This value
of the refractive index is in perfect agreement with that provided by Canham et al. [13] and
Melhem et al. [30]. This porosity calculation method was applied for all samples (PSi-1 to
PSi-9), and an average porosity value of 51 ± 2% was obtained. Notice that such a porosity
value is consistent for a p-type silicon under the etching conditions stated above. The
second method for the determination of the porosity was to carry out ImageJ software
processing. By means of image processing, we also obtained information on the distribution
of pores. Figure 2 shows a typical SEM surface top view of the PSi for five porosification
conditions (PSi-2, PSi-3, PSi-5, PSi-7, and PSi-8, described in Table 1).
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Figure 2. SEM images of PSi surface for different thicknesses: (a) PSi-2, (b) PSi-3, (c) PSi-5 (d) PSi-7,
and (e) PSi-8, with a current density of 100 mA/cm2 and pore distribution for each sample. The
limitation (dark dashes) indicates the boundary between mesopores and macropores. The Normal
law representation shows the mode for each histogram. The analysis was performed twice: (1) in red
and (2) in blue; both are represented for each sample.
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For each PSi, size distribution analyses were carried out. Indeed, we observed that
as the thickness of the porous layer increased, the number of the smallest mesopores
decreased with the appearance of macropores. Specifically, from Figure 2c, the pores on
surface started to widen. This widening was enhanced for a longer etching process, as
reported in Figure 2d,e. Statistic results obtained for the pore distribution are summarized
in Table 2.

Table 2. Pore distribution analysis in PSi.

Sample Pores Density (pores/µm2) (Pd) Average of Pores Diameter (nm) (
−

Dp)

PSi-2 4376.7 ± 21.4 12.0 ± 0.5
PSi-3 3284.7 ± 18.2 15.7 ± 0.6
PSi-5 2873.6 ± 17.5 17.4 ± 0.6
PSi-7 2439.0 ± 13.3 20.5 ± 1.5
PSi-8 1547.3 ± 10.8 25.5 ± 1.9

It was therefore observed that the more the etching time increased, the more the
pore density, Pd, decreased and the average of pore diameter, Dp increased. The Pd was
reduced by approximately three times between PSi-2 and PSi-8, and the Dp was multiplied
by about 2.5. Melhem et al. [31] obtained a Dp of 10 nm and a Pd of 6 × 103 pores/µm2

for a PSi thickness of 50 µm. These values are different from those determined in our
case (PSi-3). More details about error calculation are presented in the Supplementary
Information (Table S1). This difference can be explained by the current density, which
was 30 mA/cm2 in the case of Melhem et al. [31], with a 15% concentration of HF used
and a substrate resistivity of 15–25 mΩ.cm. These three parameters drastically modify the
characteristics of the PSi.

Cross-sections were taken to observe the in-depth morphology. It should be noted that
the corresponding morphology showed an expected columnar shape with lateral branches
of the “inverted fir tree” type, which is commonly reported in the literature in the case of
the electrochemical etching of p-doped silicon substrates [13].

Figure 3 shows four cross-sectional images of PSi. Unlike the top view SEM images,
the cross-sectional structures do not show a significant difference in morphology or pore
size. However, several porosity modulations are visible and they are especially more
apparent in sections with high porous thicknesses (Figure 3c,d). Electrochemical etching is
performed in two steps: an etching pulse and a passivation pulse. The imposed current
pulses are identical, and both last equal 10 s. During the passivation pulses, no current
is injected. The duration of these pulses therefore affects the diameter of the pores. The
origin of the modulations was investigated by varying the pulse time. The SEM images in
cross-section were obtained in 1 s (Figure 4a) and 10 s pulses (Figure 4b).

When using a pulse time of 10 s, the modulations were very regular and were approxi-
mately between 600 and 700 nm in size (Figure 4b). In the case of the 1 s etching pulses
(Figure 4a), for the same thickness obtained, there was no apparent modulation contrary to
the 10 s pulses. Therefore, the appearance of these modulations can be explained by the
etching cycle. Kuntyi et al. [32] also underlined that the pore geometry and the architecture
of the PSi vary according to several parameters, including the current regime and the total
anodization time. This indicates that for a pulsed current etching regime, the duration of
the imposed pulses will impact the formed porous structure. A high current flow can cause
tetravalent dissolution, as indicated in Ref. [13], and these conditions correspond to the
electropolishing of silicon, involving the formation of an oxide. Low current densities and
etching times are necessary to remain in the porous formation zone. By imposing 10 s pulses
with long etching times, as in Figure 2d,e, we find ourselves in a transition regime between
the formation of pores and electropolishing, when there is no longer any nanostructuring.
These periodic modulations can affect in-depth porosity of the PSi. Lascaud et al. [33]
showed that it is necessary to adjust the current density to control the in-depth porosity in
the case of high, thick layers of PSi obtained from a p+ type substrate.
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3.1.2. Porosity in G-PSi

As the CVD is carried out at a high temperature (750 ◦C or 1023 K), it is also necessary
to characterise the G-PSi in a cross-section to verify if there is any redensification of the PSi
caused by the graphene insertion.

Figure 5 shows SEM images for the G-PSi-8, obtained under the same electrochemical
etching conditions as the PSi-8 (condition Figure 2e). In comparing the PSi-8 and G-PSi-8,
we note that the pore density was greater after the CVD, increasing from 1547.3 to 3280.7
pores/µm2. Additionally, the average pore diameter was divided by two, and was 14.9 nm
for the G-PSi-8. Thus, it can be seen in Figure 5b that the mesoporous structure of G-PSi
was retained. The CVD was then realized without significant modification of the tree-like
structure. The contrast of the two images (Figures 3d and 5b) is probably linked to the
presence of carbon in the case of G-PSi due to its higher electronic conduction than PSi.
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After the microscopic analyses of the G-PSi surface and cross-section, the nature and
quality of the carbon infiltrated in the mesoporous structure was investigated using Raman
and XPS spectroscopic analyses.

3.2. Raman and XPS Analyses

The carbon coating was systematically characterized by Raman spectroscopy. A
StellarNet Raman spectroscope was used, consisting of a visible laser with a wavelength
of λL = 532 nm and a power of 100 mW. The integration time was 10 s. Figure 6a shows
the Raman spectrum. The Raman spectrometric analysis was performed on all G-PSi
samples. Firstly, The D and G peaks located at 1327 cm−1 and 1603 cm−1, respectively, can
be considered a signature of carbon [34]. The Raman spectrum of graphite contains two
peaks, therefore the G is found at around 1580 and 1600 and a D peak is found around
1350 cm−1 [35]. The presence of defects within the disordered material is responsible for
the D peak. In addition, the 2D peak has a very low intensity with a larger width compared
to the two peaks. It has been shown that at higher synthesis temperatures, this disorder
can decrease [36]. By determining the ratio I(D)/I(G), it is possible to extract information
such as the size of the domains in the coating layer. According to the work of Ferrari and
Robertson [35] and Sauze et al. [23], the carbon structure incorporated into the porous
material is called a “nanographene”. [23,35,37]. Tuinstra and Koenig’s relationship explains
that the ratio of the intensities of the D and G peaks is inversely proportional to the size of
the domain [34,35,38,39], as:

I(D)

I(G)
=

C(λ)

La
, (2)

where C (λ = 532 nm) ~ 49.6 Å [34]. A measured I(D)/I(G) ~ 0.8–0.9 leads to a domain size
of graphene La of 5.5–6.2 nm for every G-PSi sample. Pure graphene has excellent electronic
properties and thermal properties as well, a property unsuitable for thermoelectricity. The
quality of our coating is sufficient to evaluate the impact of G-PSi in the Seebeck coefficient
of the final nanomaterial. It is interesting to note that the representative peak of Si-C at
970 cm−1 was absent in the Raman spectrum, indicating the absence of SiC formation.

XPS analyses were carried out to provide information on the presence of an oxide on
the surface after graphene deposition. The XPS analysis (monochromatic source, KαAl
(1486.6 eV), with a detection energy resolution of less than 0.1 eV) was performed on five
different points. A representative spectrum is presented in Figure 6b. All the spectra show
the same trend. First, it shows that the carbon coating is homogeneous.

Secondly, it is possible to affirm that we observed a nanographene with the presence
of C-sp3 and C-sp2 bonds. This observation was also highlighted by Sauze et al. in the
case of nanographenized porous germanium, for which the insertion of nanographene was
also carried out by CVD at different temperatures [23]. The analysis also shows that the
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nanographene surface was oxidized with the presence of a peak that was related to C-O
and C-OH.
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3.3. UPS Analysis for Seebeck Determination

Ultraviolet photoelectron spectroscopy (UPS) is a technique for probing the valence
electronic states in semiconductor materials. Therefore, the Seebeck coefficient of a material
can be determine using this technique [40]. Several works have presented UPS as a
relevant characterization technique, especially for graphene [41–43]. Then, according
to the complexity of the PSi material, with marked anisotropy and branching columnar
pores formed deeply in the layer, we used this spectroscopic method for S determination
without any contact. It is a surface analysis technique (below 10 nm of thickness) for the
determination of the electrical properties of a semiconductor; for example, the Fermi level
and work function, which depends on doping. The Seebeck coefficient S is related to the
entropy per charge carrier [44]. Mott’s formula describes that S is linked to the density of
state (DoS) and can be expressed as:

S(E, T) =
π2

3
·kB

2T
q

·
(

∂ln(σ(E))
∂E

)
E=EF

, (3)

where S is the Seebeck coefficient, kB is the Boltzmann constant, q is the elementary charge,
T is the temperature, E is the binding energy, EF is the energy of Fermi level, and σ is the
electrical conductivity. The Seebeck coefficient is directly proportional to the derivative of
DoS, which depends on the energy [45]. The DoS is the number of electronic states that
are available in a system per unit volume and energy intervals. The term ∂ln(σ(E))/∂E
is linked to the shape of the DoS at the Fermi level and describes its tangent at this level
because σ(E) depends on N (charge carrier density) which is linked to D(E), the number
of available states that an electron can occupy. The UPS measurements were performed
with a ThermoScientific Escalab Xi+ as XPS analyses. This photoelectron spectrometer is
equipped with a UV source of He I with an energy of 21.2 eV. The size of the analysis area
is 650 µm. UPS spectra for Si, P-Si-8, and G-PSi-8 are provided in Figure 7.

Based on Mott’s formula, it is possible to compare the S of different materials. In the
works of Perrot et al. [46], the comparison of the S of two semi-metallic polymer materials
was qualitative. In our work, to quantify S, the spectra were fitted by a polynomial
function of the order 5, type y= A+ B1×+B2×

2+B3×
3+B4×

4+B5×
5, and selected with quality

criteria R2 > 0.999 and a B1 value. More details concerning the fit are presented in the
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Supplementary Information (Figure S3 and Table S2). This function was derived to obtained
∂ln(σ(E))/∂E at x = 0 (B1 on Figure 7). The different values obtained are presented in insert
of Figure 7b. S is determined by Equation (3).
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Through UPS, the calculation of S (Si) provided a value S(Si) = 170 ± 101 µV/K.
Therefore, the in-plane S(Si) takes values in the range of 69–271 µV/K, values which are in
good agreement with Refs. [16–18], which reported S(Si) values between 130–170 µV/K for
a dopant rate of around 1020 cm−3 from a determination was made using a conventional
method of measuring in-plane S. On the other hand, the S of the PSi is clearly higher
than indicated in the literature, which provides values of S(PSi) equal to 1014 µV/K for
a maximum value [27]. UPS is a surface analysis, and the surface of PSi oxidizes easily
after exposure to ambient air. It is also reported in the literature that oxide surfaces have a
high Seebeck coefficient of about 1000 µV/K at 340 K [47]. The in-plane S determination
with the oxide overestimated the value of the S(PSi). However, we can affirm that the S
of PSi is greater than S(Si) and S(G-PSi). For G-PSi, the literature reports no result on S
measurements to confirm this value. Given the complexity of the material, we can say
that the value is probably also overestimated, similar to PSi. Equation (4) depends on two
components, mobility and the shape of the DoS [44,45], and we can write:

S(E, T) =
π2

3
·kB

2T
q

·
(

1
n

dn(E)
dE

+
1
µ

dµ(E)
dE

)
E=EF

, (4)

where the terms n(E) and µ(E) are the energy-dependent carrier density (affect DoS) and
mobility (affect electronic properties), respectively. Then, we can assume that similar to Si,
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G-PSi is more conductive than Psi, so we increase mobility-dependent part. For PSi, the DoS
dependent component is certainly higher, contrary to the mobility-dependent part, which
demonstrates a high S. In contrast, G-PSi is normally more conductive than PSi [48] because
there is nanographene in its pores; this affects the DoS-related component differently than
Psi, which has empty pores. In this case, both components (DoS and mobility) affect the S.
Indeed, the error calculated by UPS on S is smaller on Si than on PSi and G-PSi. Again, this
is likely related to the porous, complex structure of PSi and G-PSi.

Given the high values of the S of PSi and probably for G-PSi by UPS, macroscopic
S measurement are needed in order to verify the S of our materials in depth. A device
adapted to the measurements of S of the PSi and G-PSi was developed for the in-depth S
determination of this complex structure.

3.4. ZT Meter Design for Seebeck Measurement

The homemade device was based on the application of a temperature gradient and ia
composed of two aluminium heat sinks (a hot source at the top and a cold source at the
bottom) arranged on a vertical system (Figure 8a,b). It allowed the thermal conductivity
and the Seebeck coefficient to be measured simultaneously. As shown in Figure 8c, the hot
source was equipped on its surface with a Peltier module to create the temperature rise
and contained a suitable thermal sensor (heat flux and temperature), which also included
electrical pins (spring pins facilitating surface contact). The cold source was also equipped
with a thermal sensor and was then connected to a cryostat, which ensured the cooling
of the entire cold block (Figure 8d). The sample was trapped between the hot and cold
sources and was in direct contact with the temperature sensors on both sides, as illustrated
on Figure 8. The electrical and thermal sensors were connected to a Keithley DAQ6510
instrument, which provided data acquisition of the electrical potential and temperature
difference values through KickStart® software (Beaverton, OR, USA).
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By varying the temperature of the cryostat, different temperatures from the hot source
Th and the cold source Tc were therefore obtained. Data acquisition was carried out and
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monitored in real time. Several parameters were recorded including the different acquisition
times, and the potential difference (∆U) and different temperatures measured. The total
recording time was the same for each sample. To evaluate S, a heating sequence was
performed over a temperature range from 30 to 70 ◦C. Once Tc and Th were stabilized, the
value of ∆T (Th − Tc) was determined and then ∆U was determined, as shown in Figure 9.
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Figure 9. Example of cooling sequence for establishing ∆T in a temperature range from 70 to 50 ◦C
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This method was first carried out for bulk materials, bismuth tellurium (Bi2Te3),
copper (Cu), and Si. Their characteristics and S values are presented in Table 3 and in
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the Supplementary Information (Figure S4). For Si, as a further precaution, a thin film of
platinum (~5 nm) was deposited by evaporation on bulk silicon in order to confirm that the
Seebeck value was not impacted by metal–semiconductor contacts. After the calibration,
the measurements are carried out on PSi and G-PSi. In order to properly measure the S of
our materials, the same deoxidation method was performed on all samples before each
measurement.

Table 3. Summary of materials characteristics.

Material Dopant Thickness
(µm)

Dopant Rate
(cm−3) S (µV/K)

Bi2Te3 N 3000 1018 −175 ± 10
(T = 350 K)

Bi2Te3 [49] N 2000 not indicated −140
(T = 350 K)

Bi2Te3 [50] N not indicated not indicated −160
(T = 325 K)

Bi2Te3 [51] N not indicated 3–4 × 1019 −175
(T = 350 K)

Cu undoped 450 undoped 1.5 ± 0.5
Cu [52] undoped not indicated undoped 2–3
Cu [53] undoped not indicated undoped 2 ± 1

Si P/p+ 500 1020—1021 100 ± 15
Si [18] P/p+ not indicated 1.2 × 1020 170
Si [17] P/p+ not indicated 1020–1021 150
Si [16] P/p+ not indicated 1020–1021 130

PSi-1–PSi-9 P 20–160 - 400 ± 15 – 792 ± 15
PSi [27] P 120 - 917
PSi [27] P 100 - 903
PSi [27] P 100 - 636

G-PSi-2–G-PSi-9 P 30–160 - 110 ± 15 –125 ± 15

3.5. Seebeck Coeffcient Values of PSi and G-PSi

Figure 10 presents the S values of PSi/G-Psi, measured for different porous layer
thicknesses. The S value of Si [16–18] are provided as a reference. Table 3 also summarizes
the characteristics of the materials, including the doping type and the S.

First, as detailed in Figure 10 from (1) to (3), the measurements were repeated three
times for each PSi sample. According to our results, we can affirm that we obtained an
in-depth S(PSi) = 750 ± 40 µV/K, for which S was independent of the electrochemical
etching process, from an etching time of 25 min (55 µm). The first two values measured,
respectively, S = 417 µV/K and S = 400 µV/K, were approximately two times lower
than the optimal S(PSi) measured. Indeed, S is an intrinsic property of the material,
independent of the thickness. The variations in the thicknesses of the PSi layers are of
particular interest in this study to overcome the contribution of the Si substrate. Indeed,
due to its higher electrical conduction, Si, is conversely proportional to S and can cause a
decrease in the S measured. In order to verify this hypothesis, a simulation was carried
out by COMSOL Multiphysics® (Grenoble, France). The results are presented in the
Supplementary Materials (Figure S5 with Refs. [54,55]). It was therefore observed that the
thermal gradient takes place essentially in the mesoporous layer, and that the contribution
of Si substrate in the measurement of S(PSi) is made even lower by increasing the thickness
of the mesoporous layer.
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By increasing the electrochemical etching time, the thickness of the mesoporous layer was increased
with a fixed current density of 100 mA/cm2, which has a weak impact on the porosity. On the other
hand, the values of the membrane PSi and porosity [27] were obtained at different etching times and
current density, which explains the large variation in porosity.

In Figures 2 and 4, we observed different pore size distributions and a variation in pore
density that correlated with the pulse/etching process duration. The enlargement of the
surface pores and the variation in porosity linked to the etching pulses and the modulations
can also affect the measurement of S. Valalaki et al. [27] showed variations of S related to
different porosities, as shown in Figure 10. For a porosity value of 63% and a thickness
of 36 µm, the S was approximately 600 µV/K. However, for a porosity of 55% and a PSi
thickness of 52 µm, S = 900 µV/K. Therefore, an 8% variation in surface porosity implies
an increase of S of about 300 µV/K. The surface porosity greatly affected the value of the
in-plane S measured. The works of Melhem et al. [31] showed that for p-doped silicon
with a crystal orientation of (100), although the current density was fixed at 30 mA/cm2,
changes in terms of porosity were also noted for same thickness range. According to the
surface of our mesoporous layers and process parameters, we can assume variations in
surface and in-depth porosity. This was shown by Melhem et al. [31] in reflectivity analyses.
Indeed, the depth porosity also varies according to the evolution of the dielectric functions
reducing the average density of the Si-Si bonds.

In another work, Melhem et al. [30] observed through transmission electron mi-
croscopy that the crystallinity of silicon is preserved with an oxidized amorphous layer
along the pores. As discussed in Section 3.3, the presence of these crystalline and amor-
phous phases affects the Seebeck coefficient of semiconductor materials and semi-metals.
Also, their work on optical characterization showed an evolution of the optical response of
the PSi that originated from the structural and chemical evolution of the porous layers, with
porosities ranging from 28 to 41% and thicknesses ranging from 0.2 to 50 µm, approximately.
We can therefore consider that the chemical structure of the PSi evolves with further etching
and the presence of Si-H and Si-O links [30,31,56,57], which affects the transport properties.
These authors showed that the period and the amplitude of the interferential oscillations
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in the layers reveal a dependence on the porosity and the thickness of the PSi. Indeed, S
depends on carrier diffusion (Sd) and phonon drag (Sph). In nanostructured semiconduc-
tors, both effects have an impact on the variation of the total S. This low dimensionality
causes quantum confinement, which impacts the transport of charge carriers. In the work
of Singh et al. [58], we observed that the S of silicon nanocrystals (Si NCs) was lower for
a size of 2.4 nm, unlike the S obtained for larger sizes of NC of 5.6 and 8.3 nm. Analyses
of the coupling constants showed that the coupling of acoustic phonons is approximately
three times higher in the 2.4 nm NC, unlike the 5.6 and 8.3 nm NC. These deviations
therefore affect the dynamics and the diffusion of the carriers as well as the thermoelectric
properties of the nanostructured silicon. Due to strong phonon scattering in small NCs
and the likely reduction of phonon lifetime (τph) with NC size (Sph ~ τph/µT, with µ is the
electron mobility) [57–59], the strong coupling of electrons with phonons leads to much
shorter carrier diffusion and phonon drag, and a strong reduction in S observed in small
Si NCs.

In the case of G-PSi, unlike PSi, the S = 120 ± 15 µV/K measured for each sample is
very close to S(Si). Nanographene is as good an electrical conductor as Si. This feature
assigns other properties, including S, which is affected by electron mobility. We can assume
that the presence of carbon makes it possible to stabilize the mesoporous structure and
drastically reduce the S, which is very close to that of the Si substrate. Contrary to the
values obtained by UPS, the in-depth S (PSi) and (G-PSi) are lower. Comparing these results,
the S(Si) values are closely similar with the S(Si)= 170 ± 101 µV/K and 100 ± 15 µV/K,
obtained by UPS and ZT meter, respectively. Keeping in mind that the UPS method
concerns the in-plane S values, a significant difference is noted for S(PSi) and S(G-PSi)
values. Additional investigations on thermal and electrical conductivities are in progress to
evaluate the thermoelectric efficiency of nanocomposites.

4. Conclusions

In this work, we investigated the relation between a nanographene-coated and an
uncoated porous structure and the Seebeck coefficient. First, we successfully measured
the S(PSi) = 750 ± 40 µV/K, which is uncorrelated to the mesoporous thickness and to
the Si sublayer and is more conductive than nanostructured Si. Moreover, Raman, XPS,
and UPS spectroscopy analyses confirmed the presence of nanographene but also of some
amorphous phases and oxidized surfaces that explain the higher S values compared to the
p+ doped Si in the case of PSi and G-PSi. In conclusion, the unexpected effect is induced by
the nanographene, which contributes to a higher electronic transport but a lower Seebeck
value, close to S(Si) values, contrary to the trends investigated by UPS.
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for PSi-3); Table S1: Calculation of deviation and errors; Figure S3: Methodology for fit and S
value determination of Si by UPS; Table S2: Summary of polynomial fit characteristics; Figure S4:
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