Low Threshold Current and Polarization-Stabilized 795 nm Vertical-Cavity Surface-Emitting Lasers
Abstract
:1. Introduction
2. Device Design and Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, F.; Zhao, X.; Lv, X.; Hu, L.; Jiang, W.; Yang, F.; Chi, L.; Chang, P.; Xu, C.; Xie, Y. An LSPR Sensor Integrated with VCSEL and Microfluidic Chip. Nanomaterials 2022, 12, 2607. [Google Scholar] [CrossRef]
- Cash, P.; Kosvin, I.; Park, H.; Stanczyk, M.; Wacker, M.F. Low Phase Noise Low Power Atomic Clocks. In Proceedings of the 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Paris, France, 24–28 April 2022; pp. 1–5. [Google Scholar]
- Wang, Z. Review of chip-scale atomic clocks based on coherent population trapping. Chin. Phys. B 2014, 23, 030601. [Google Scholar] [CrossRef]
- Serkland, D.K.; Geib, K.M.; Peake, G.M.; Lutwak, R.; Rashed, A.; Varghese, M.; Tepolt, G.; Prouty, M. VCSELs for atomic sensors. In Proceedings of the Volume 6484, Vertical-Cavity Surface-Emitting Lasers XI, San Jose, CA, USA, 23 February 2007; p. 648406. [Google Scholar]
- Darwin, K.S.; Gregory, M.P.; Kent, M.G.; Robert, L.; Garvey, R.M.; Mathew, V.; Mark, M. VCSELs for atomic clocks. In Proceedings of the Volume 6132, Vertical-Cavity Surface-Emitting Lasers X, San Jose, CA, USA, 10 February 2006; p. 613208. [Google Scholar]
- Camparo, J.; Huang, M.; Coffer, J. Laser Polarization Noise & CPT Atomic Clock Signals. In Proceedings of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, Geneva, Switzerland, 29 May–1 June 2007; pp. 1056–1059. [Google Scholar]
- Panajotov, K.; Danckaert, J.; Verschaffelt, G.; Peeters, M.; Nagler, B.; Albert, J.; Ryvkin, B.; Thienpont, H.; Veretennicoff, I. Polarization behavior of vertical-cavity surface-emitting lasers: Experiments, models and applications. AIP Conf. Proc. 2001, 560, 403–417. [Google Scholar]
- Verschaffelt, G.; Panajotov, K.; Albert, J.; Nagler, B.; Peeters, M.; Danckaert, J.; Veretennicoff, I.; Thienpont, H. Polarisation switching in vertical-cavity surface-emitting lasers: From experimental observations to applications. Opto-Electron. Rev. 2001, 9, 257–268. [Google Scholar]
- Chang-Hasnain, C.J.; Harbison, J.P.; Florez, L.T.; Stoffel, N.G. Polarisation characteristics of quantum-well vertical cavity surface emitting lasers. Electron. Lett. 1991, 27, 163–165. [Google Scholar] [CrossRef]
- Panajotov, K.; Nagler, B.; Verschaffelt, G.; Georgievski, A.; Thienpont, H.; Danckaert, J.; Veretennicoff, I. Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 2000, 77, 1590–1592. [Google Scholar] [CrossRef]
- Shi, J.-W.; Khan, Z.; Horng, R.-H.; Yeh, H.-Y.; Huang, C.-K.; Liu, C.-Y.; Shih, J.-C.; Chang, Y.-H.; Yen, J.-L.; Sheu, J.-K. High-power and single-mode VCSEL arrays with single-polarized outputs by using package-induced tensile strain. Opt. Lett. 2020, 45, 4839–4842. [Google Scholar] [CrossRef]
- Tadanaga, O.; Tateno, K.; Uenohara, H.; Kagawa, T.; Amano, C. An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311) B substrate with high-polarization stability. IEEE Photonics Technol. Lett. 2000, 12, 942–944. [Google Scholar] [CrossRef]
- Verschaffelt, G.; van der Vleuten, W.; Creusen, M.; Smalbrugge, E.; van de Roer, T.G.; Karouta, F.; Strijbos, R.C.; Danckaert, J.; Veretennicoff, I.; Ryvkin, B.; et al. Polarization stabilization in vertical-cavity surface-emitting lasers through asymmetric current injection. IEEE Photonics Technol. Lett. 2000, 12, 945–947. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Kawakami, T.; Saito, H.; Kosaka, H.; Kajita, M.; Kurihara, K.; Sugimoto, Y.; Kasahara, K. Polarization-controlled single-mode VCSEL. IEEE J. Quantum Electron. 1998, 34, 1009–1015. [Google Scholar] [CrossRef]
- Choquette, K.D.; Leibenguth, R. Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries. IEEE Photonics Technol. Lett. 1994, 6, 40–42. [Google Scholar] [CrossRef]
- Debernardi, P.; Ostermann, J.M.; Feneberg, M.; Jalics, C.; Michalzik, R. Reliable polarization control of VCSELs through monolithically integrated surface gratings: A comparative theoretical and experimental study. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 107–116. [Google Scholar] [CrossRef]
- Gustavsson, J.S.; Haglund, Å.; Vukušić, J.A.; Bengtsson, J.; Jedrasik, P.; Larsson, A. Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating. Opt. Express 2005, 13, 6626–6634. [Google Scholar] [CrossRef]
- Ostermann, J.M.; Debernardi, P.; Michalzik, R. Optimized Integrated Surface Grating Design for Polarization-Stable VCSELs. IEEE J. Quantum Electron. 2006, 42, 690–698. [Google Scholar] [CrossRef]
- Al-Samaneh, A.; Haidar, M.T.; Wahl, D.; Michalzik, R. Polarization-stable single-mode VCSELs for Cs-based miniature atomic clocks. In Proceedings of the CLEO/Europe and EQEC 2011 Conference Digest, Munich, Germany, 22–26 May 2011; p. CB_P23. [Google Scholar]
- Miah, M.J.; Al-Samaneh, A.; Kern, A.; Wahl, D.; Debernardi, P.; Michalzik, R. Fabrication and characterization of low-threshold polarization-stable VCSELs for Cs-based miniaturized atomic clocks. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1701410. [Google Scholar] [CrossRef]
- Schablitsky, S.J.; Zhuang, L.; Shi, R.C.; Chou, S.Y. Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings. Appl. Phys. Lett. 1996, 69, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Nazhan, S.; Ghassemlooy, Z. Polarization Switching Dependence of VCSEL on Variable Polarization Optical Feedback. IEEE J. Quantum Electron. 2017, 53, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Shi, L.; Huang, D.; Luo, J.; Gao, Q.; Lan, T.; Bai, M.; Li, J.; Dang, L.; Huang, L.; et al. Control of polarization switching in a VCSEL via resonant feedback from a whispering-gallery-mode cavity. Opt. Lett. 2022, 47, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X.; Huang, Y.; Zhang, J.; Hofmann, W.; Ning, Y.; Wang, L. OPSR enhancement of high-temperature operating shallow-surface grating VCSELs. Appl. Opt. 2018, 57, 4486–4490. [Google Scholar] [CrossRef]
- Liao, W.; Li, C.; Li, J.; Guo, X.; Guo, W.; Wei, X.; Tan, M. Polarization control and mode optimization of 850 nm multi-mode VCSELs using surface grating. Appl. Phys. B Lasers Opt. 2021, 127, 23. [Google Scholar] [CrossRef]
- Camparo, J. The rubidium atomic clock and basic research. Phys. Today 2007, 60, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ning, Y.; Zeng, Y.; Zhang, J.; Zhang, J.; Fu, X.; Tong, C.; Wang, L. Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks. Laser Phys. Lett. 2013, 10, 045802. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; He, Y.; Yu, S.; Dong, J. Design and performance of high temperature operating resonant-cavity photodiodes based on 795 nm-VCSEL structure. Phys. Status Solidi A 2016, 213, 3136–3141. [Google Scholar] [CrossRef]
- Sun, Y.R.; Dong, J.R.; Zhao, Y.M.; Yu, S.Z.; He, Y.; Huang, J. The fabrication and lasing characteristics of oxide-confined 795 nm VCSELs with close and open isolation trenches. Opt. Quantum Electron. 2017, 49, 361. [Google Scholar] [CrossRef]
- Zhou, Y.; Jia, Y.; Zhang, X.; Zhang, J.; Liu, Z.; Ning, Y.; Wang, L. Large-aperture single-mode 795 nm VCSEL for chip-scale nuclear magnetic resonance gyroscope with an output power of 4.1 mW at 80 °C. Opt. Express 2022, 30, 8991–8999. [Google Scholar] [CrossRef]
- Fu, Q.; Sun, Y.; Yu, S.; Wang, A.; Yin, J.; Dong, J.-R. Polarization control of 795 nm vertical-cavity surface-emitting lasers by in-phase surface gratings. Appl. Opt. 2022, 61, 8389–8394. [Google Scholar] [CrossRef]
- Michalzik, R. VCSEL Fundamentals. In VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers; Michalzik, R., Ed.; Springer: Berlin, Heidelberg/Germany, 2013; pp. 19–75. [Google Scholar]
- Moharam, M.G.; Grann, E.B.; Pommet, D.A.; Gaylord, T.K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 1995, 12, 1068–1076. [Google Scholar] [CrossRef]
- Dallesasse, J.M.; Gavrilovic, P.; Holonyak, N., Jr.; Kaliski, R.; Nam, D.; Vesely, E.; Burnham, R. Stability of AlAs in AlxGa1−xAs-AlAs-GaAs quantum well heterostructures. Appl. Phys. Lett. 1990, 56, 2436–2438. [Google Scholar] [CrossRef]
- Verschuuren, M.; Gerlach, P.; van Sprang, H.A.; Polman, A. Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography. Nanotechnology 2011, 22, 505201. [Google Scholar] [CrossRef] [Green Version]
- Katsidis, C.C.; Siapkas, D.I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 2002, 41, 3978–3987. [Google Scholar] [CrossRef]
- Kitching, J. Chip-scale atomic devices. Appl. Phys. Rev. 2018, 5, 031302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Sun, Y.; Yu, S.; Wang, A.; Yin, J.; Zhao, Y.; Dong, J. Low Threshold Current and Polarization-Stabilized 795 nm Vertical-Cavity Surface-Emitting Lasers. Nanomaterials 2023, 13, 1120. https://doi.org/10.3390/nano13061120
Fu Q, Sun Y, Yu S, Wang A, Yin J, Zhao Y, Dong J. Low Threshold Current and Polarization-Stabilized 795 nm Vertical-Cavity Surface-Emitting Lasers. Nanomaterials. 2023; 13(6):1120. https://doi.org/10.3390/nano13061120
Chicago/Turabian StyleFu, Qiuxue, Yurun Sun, Suzhen Yu, Ancheng Wang, Jiajing Yin, Yongming Zhao, and Jianrong Dong. 2023. "Low Threshold Current and Polarization-Stabilized 795 nm Vertical-Cavity Surface-Emitting Lasers" Nanomaterials 13, no. 6: 1120. https://doi.org/10.3390/nano13061120
APA StyleFu, Q., Sun, Y., Yu, S., Wang, A., Yin, J., Zhao, Y., & Dong, J. (2023). Low Threshold Current and Polarization-Stabilized 795 nm Vertical-Cavity Surface-Emitting Lasers. Nanomaterials, 13(6), 1120. https://doi.org/10.3390/nano13061120