A Facile Microwave Hydrothermal Synthesis of ZnFe2O4/rGO Nanocomposites for Supercapacitor Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials Synthesis
2.3. Materials Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Structure Analysis Morphology Analysis
3.2. Morphology Analysis
3.3. Electrochemical Performance of Supercapacitor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chhetri, K.; Kim, T.; Acharya, D.; Muthurasu, A.; Dahal, B.; Bhattarai, R.M.; Lohani, P.C.; Pathak, I.; Ji, S.; Ko, T.H.; et al. Hollow Carbon Nanofibers with Inside-outside Decoration of Bi-metallic MOF Derived Ni-Fe Phosphides as Electrode Materials for Asymmetric Supercapacitors. Chem. Eng. J. 2022, 450, 138363. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, J.; Yin, H.; Zhao, Y.; Xu, G.; Yuan, J.; Mo, X.; Tang, J.; Wang, F. Ultra-Fine Ruthenium Oxide Quantum Dots/Reduced Graphene Oxide Composite as Electrodes for High-Performance Supercapacitors. Nanomaterials 2022, 12, 1210. [Google Scholar] [CrossRef]
- Gao, R.; Tang, J.; Yu, X.; Lin, S.; Zhang, K.; Qin, L.C. Layered Silicon-Based Nanosheets as Electrode for 4 V High-Performance Supercapacitor. Adv. Funct. Mater. 2020, 30, 2002200. [Google Scholar] [CrossRef]
- Anil Kumar, Y.; Koyyada, G.; Kumar Kulurumotlakatla, D.; Kim, J.H.; Moniruzzaman, M.; Alzahmi, S.; Obaidat, I.M. In Situ Grown Mesoporous Structure of Fe-Dopant@NiCoOX@NF Nanoneedles as an Efficient Supercapacitor Electrode Material. Nanomaterials 2023, 13, 292. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Tang, J.; Zhang, K.; Suzuki, T.S.; Wei, Q.; Mukaida, M.; Zhang, Y.; Mamiya, H.; Yu, X.; Qin, L.-C. High-rate supercapacitor using magnetically aligned graphene. J. Power Sources 2021, 482, 228995. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Zhang, Y.; Zhao, Y.; Yin, H.; Hua, Q.; Yuan, J.; Tang, J. A ternary composite RuO2@SWCNT/graphene for high performance electrochemical capacitors. Mater. Lett. 2020, 259, 126860. [Google Scholar] [CrossRef]
- Bhattarai, R.M.; Chhetri, K.; Natarajan, S.; Saud, S.; Kim, S.J.; Mok, Y.S. Activated carbon derived from cherry flower biowaste with a self-doped heteroatom and large specific surface area for supercapacitor and sodium-ion battery applications. Chemosphere 2022, 303, 135290. [Google Scholar] [CrossRef]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653–12672. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, X. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Y. Recent progress in supercapacitors: From materials design to system construction. Adv. Mater. 2013, 25, 5336–5342. [Google Scholar] [CrossRef]
- Tang, H.; Wang, J.; Yin, H.; Zhao, H.; Wang, D.; Tang, Z. Growth of polypyrrole ultrathin films on MoS2 monolayers as high—Performance supercapacitor electrodes. Adv. Mater. 2015, 27, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energ. Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, L.; Su, H.; Huang, W.; Dong, X. Binary metal oxide: Advanced energy storage materials in supercapacitors. J. Mater. Chem. A 2015, 3, 43–59. [Google Scholar] [CrossRef]
- Nagarani, S.; Sasikala, G.; Satheesh, K.; Yuvaraj, M.; Jayavel, R. Synthesis and characterization of binary transition metal oxide/reduced graphene oxide nanocomposites and its enhanced electrochemical properties for supercapacitor applications. J. Mater. Sci. Mater. Electron. 2018, 29, 11738–11748. [Google Scholar] [CrossRef]
- Yang, S.; Han, Z.; Sun, J.; Yang, X.; Hu, X.; Li, C.; Cao, B. Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode. Electrochim. Acta 2018, 268, 20–26. [Google Scholar] [CrossRef]
- Zate, M.K.; Shaikh, S.M.F.; Jadhav, V.V.; Tehare, K.K.; Kolekar, S.; Mane, R.S.; Naushad, M.; Pawar, B.; Hui, K. Synthesis and electrochemical supercapacitive performance of nickel–manganese ferrite composite films. J. Anal. Appl. Pyrolysis 2015, 116, 177–182. [Google Scholar] [CrossRef]
- Giri, S.; Ghosh, D.; Das, C.K. One pot synthesis of ilmenite-type NiMnO3–“nitrogen-doped” graphene nanocomposite as next generation supercapacitors. Dalton Trans. 2013, 42, 14361–14364. [Google Scholar] [CrossRef]
- Zhang, D.; Li, W.; Ye, R.; Guo, X.; Wang, S.; Wang, X.; Xiang, Q. A facile strategy for ZnFe2O4 coating preparing by electrophoretic deposition and its supercapacitor performances. J. Mater. Sci. Mater. Electron. 2018, 29, 5454–5458. [Google Scholar] [CrossRef]
- Israr, M.; Iqbal, J.; Arshad, A.; Aisida, S.O.; Ahmad, I. A unique ZnFe2O4/graphene nanoplatelets nanocomposite for electrochemical energy storage and efficient visible light driven catalysis for the degradation of organic noxious in wastewater. J. Phys. Chem. Solids 2020, 140, 109333. [Google Scholar] [CrossRef]
- Palanivel, B.; Maiyalagan, T.; Jayarman, V.; Ayyappan, C.; Alagiri, M. Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance. Appl. Surf. Sci. 2019, 498, 143807. [Google Scholar] [CrossRef]
- Vadiyar, M.M.; Kolekar, S.S.; Chang, J.-Y.; Ye, Z.; Ghule, A.V. Anchoring ultrafine ZnFe2O4/C nanoparticles on 3D ZnFe2O4 nanoflakes for boosting cycle stability and energy density of flexible asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2017, 9, 26016–26028. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Subudhi, S.; Alam, I.; Subramanyam, B.; Patra, S.; Raiguru, J.; Das, S.; Mahanandia, P. Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications. Inorg. Chem. Commun. 2021, 123, 108332. [Google Scholar] [CrossRef]
- Alsulami, Q.A.; Alharbi, L.M.; Keshk, S.M. Synthesis of a graphene oxide/ZnFe2O4/polyaniline nanocomposite and its structural and electrochemical characterization for supercapacitor application. Int. J. Energy Res. 2022, 46, 2438–2445. [Google Scholar] [CrossRef]
- Li, L.; Bi, H.; Gai, S.; He, F.; Gao, P.; Dai, Y.; Zhang, X.; Yang, D.; Zhang, M.; Yang, P. Uniformly dispersed ZnFe2O4 nanoparticles on nitrogen-modified graphene for high-performance supercapacitor as electrode. Sci. Rep. 2017, 7, 43116. [Google Scholar] [CrossRef] [Green Version]
- Ghadimi, L.S.; Arsalani, N.; Ahadzadeh, I.; Hajalilou, A.; Abouzari-Lotf, E. Effect of synthesis route on the electrochemical performance of CoMnFeO4 nanoparticles as a novel supercapacitor electrode material. App. Surf. Sci. 2019, 494, 440–451. [Google Scholar] [CrossRef]
- Ammar, A.U.; Yildirim, I.D.; Bakan, F.; Erdem, E. ZnO and MXenes as electrode materials for supercapacitor devices. Beilstein J. Nanotechnol. 2021, 12, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, S.P.; Pandikumar, A.; Goh, B.T.; Lim, Y.S.; Basirun, W.J.; Lim, H.N.; Huang, N.M. Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. RSC Adv. 2015, 5, 14010–14019. [Google Scholar] [CrossRef]
- Tiwari, N.; Kadam, S.; Ingole, R.; Kulkarni, S. Facile hydrothermal synthesis of ZnFe2O4 nanostructures for high-performance supercapacitor application. Ceram. Int. 2022, 48, 29478–29483. [Google Scholar] [CrossRef]
- Devi, N.; Sahoo, S.; Kumar, R.; Singh, R.K. A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. Nanoscale 2021, 13, 11679–11711. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, S.; Muralidharan, G. Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Appl. Surf. Sci. 2018, 449, 485–491. [Google Scholar]
- Jayasubramaniyan, S.; Balasundari, S.; Rayjada, P.; Kumar, R.A.; Satyanarayana, N.; Muralidharan, P. Enhanced electrochemical performance of MnCo2O4 nanorods synthesized via microwave hydrothermal method for supercapacitor applications. J. Mater. Sci. Mater. Electron. 2018, 29, 21194–21204. [Google Scholar] [CrossRef]
- Kour, P.; Yadav, K. Electrochemical performance of mixed-phase 1T/2H MoS2 synthesized by conventional hydrothermal v/s microwave-assisted hydrothermal method for supercapacitor applications. J. Alloys Compd. 2022, 922, 166194. [Google Scholar] [CrossRef]
- Wang, E.R.; Shih, K.Y. Facile Microwave Hydrothermal Synthesis of ZnFe(2)O(4)/rGO Nanocomposites and Their Ultra-Fast Adsorption of Methylene Blue Dye. Materials 2021, 14, 5394. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zhao, J.; Yuan, J.; Zhao, Y.; Yin, H.; Wang, F.; Tang, J.; Zhang, J. A facile one-pot microwave assisted hydrothermal synthesis of hierarchical cobalt oxide/reduced graphene oxide composite electrode for high-performance supercapacitors. J. Alloys Compd. 2022, 897, 163163. [Google Scholar] [CrossRef]
- Hargreaves, J. Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catal. Struct. React. 2016, 2, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Sharma, Y.; Sharma, N.; Rao, G.S.; Chowdari, B. Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim. Acta 2008, 53, 2380–2385. [Google Scholar] [CrossRef]
- Yoo, P.S.; Reddy, D.A.; Jia, Y.; Bae, S.E.; Huh, S.; Liu, C. Magnetic core-shell ZnFe2O4/ZnS nanocomposites for photocatalytic application under visible light. J. Colloid Interface Sci. 2017, 486, 136–143. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, Y.; Yu, T.; Shen, Z. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Han, Z.; Zheng, F.; Sun, J.; Qiao, Z.; Yang, X.; Li, L.; Li, C.; Song, X.; Cao, B. ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes. Carbon 2018, 134, 15–21. [Google Scholar] [CrossRef]
Materials | Specific Capacitance | Cycle Performance | Reference |
---|---|---|---|
Active Carbon/MWCNTs@ZnFe2O4 | 5 mV s−1 613F g−1 | 91% at 1 A g−1 after 10,000 cycles | [23] |
ZnFe2O4/rGO | 1 A g−1 352.9 F g−1 | 76.5% at 10 A g−1 after 10,000 cycles | [16] |
ZnFe2O4/N-rGO | 0.5 A g−1 352.9 F g−1 | 83.8% at 100 mV s−1 after 5000 cycles | [25] |
ZnFe2O4/rGO | 0.5 A g−1 314 F g−1 | 77.6% at 5 A g−1 after 1500 cycle/s | [20] |
ZnFe2O4/rGO | 1 A g−1 628 F g−1 | 89% at 1 A g−1 after 2500 cycles | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, X.; Xu, G.; Kang, X.; Yin, H.; Cui, X.; Zhao, Y.; Zhang, J.; Tang, J.; Wang, F. A Facile Microwave Hydrothermal Synthesis of ZnFe2O4/rGO Nanocomposites for Supercapacitor Electrodes. Nanomaterials 2023, 13, 1034. https://doi.org/10.3390/nano13061034
Mo X, Xu G, Kang X, Yin H, Cui X, Zhao Y, Zhang J, Tang J, Wang F. A Facile Microwave Hydrothermal Synthesis of ZnFe2O4/rGO Nanocomposites for Supercapacitor Electrodes. Nanomaterials. 2023; 13(6):1034. https://doi.org/10.3390/nano13061034
Chicago/Turabian StyleMo, Xiaoyao, Guangxu Xu, Xiaochan Kang, Hang Yin, Xiaochen Cui, Yuling Zhao, Jianmin Zhang, Jie Tang, and Fengyun Wang. 2023. "A Facile Microwave Hydrothermal Synthesis of ZnFe2O4/rGO Nanocomposites for Supercapacitor Electrodes" Nanomaterials 13, no. 6: 1034. https://doi.org/10.3390/nano13061034
APA StyleMo, X., Xu, G., Kang, X., Yin, H., Cui, X., Zhao, Y., Zhang, J., Tang, J., & Wang, F. (2023). A Facile Microwave Hydrothermal Synthesis of ZnFe2O4/rGO Nanocomposites for Supercapacitor Electrodes. Nanomaterials, 13(6), 1034. https://doi.org/10.3390/nano13061034