FeF3/(Acetylene Black and Multi-Walled Carbon Nanotube) Composite for Cathode Active Material of Thermal Battery through Formation of Conductive Network Channels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Experimental Details
2.3. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ko, J.; Kang, S.H.; Cheong, H.W.; Yoon, Y.S. Recent Progress in Cathode Materials for Thermal Batteries. J. Korean Ceram. Soc. 2019, 56, 233–255. [Google Scholar] [CrossRef]
- Kim, I.Y.; Woo, S.P.; Ko, J.; Kang, S.H.; Yoon, Y.S.; Cheong, H.W.; Lim, J.H. Binder-Free Cathode for Thermal Batteries Fabricated Using FeS2 Treated Metal Foam. Front. Chem. 2020, 7, 904. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, R.A.; Masset, P. Thermally Activated (“thermal”) Battery Technology. Part I: An Overview. J. Power Sources 2006, 161, 1443–1449. [Google Scholar] [CrossRef]
- Roh, H.C.; Kim, I.Y.; Ahn, T.Y.; Cheong, H.W.; Yoon, Y.S. Influence of Temperature on Performance of CuV2O6 Cathode for High Voltage Thermal Battery. J. Korean Ceram. Soc. 2021, 58, 507–518. [Google Scholar] [CrossRef]
- Ko, J.; Kim, I.Y.; Jung, H.M.; Cheong, H.; Yoon, Y.S. Thin Cathode for Thermal Batteries Using a Tape-Casting Process. Ceram. Int. 2017, 43, 5789–5793. [Google Scholar] [CrossRef]
- Masset, P.; Guidotti, R.A. Thermal Activated (Thermal) Battery Technology. Part II. Molten Salt Electrolytes. J. Power Sources 2007, 164, 397–414. [Google Scholar] [CrossRef]
- Masset, P.J.; Guidotti, R.A. Thermal Activated (“thermal”) Battery Technology. Part IIIb. Sulfur and Oxide-Based Cathode Materials. J. Power Sources 2008, 178, 456–466. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Y.; Sun, Y.; Jiao, Q. Hydrothermal Synthesis of MoS2 with Different Morphology and Its Performance in Thermal Battery. J. Power Sources 2018, 395, 318–327. [Google Scholar] [CrossRef]
- Yang, T.; Cai, L.; White, R.E. Mathematical Modeling of the LiAl/FeS2 High Temperature Battery System. J. Power Sources 2012, 201, 322–331. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, J.; Wang, X.; Tang, C.; Cui, Y.; Zhuang, Q. Al2O3 Nanoparticles Modified the FeS2 Cathode to Boost the Interface Wettability and Electrochemical Performance for Thermal Batteries. Mater. Lett. 2023, 330, 133290. [Google Scholar] [CrossRef]
- Au, M. Nanostructured Thermal Batteries with High Power Density. J. Power Sources 2003, 115, 360–366. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, L.; Chu, Y.; Tian, Q.; Wang, J.; Li, Y.; Wu, Q.; Zhu, Y. Preparation and Electrochemical Properties of a New Fe0.5Co0.5S2 Cathode Material for Thermal Batteries. J. Alloys Compd. 2018, 762, 109–114. [Google Scholar] [CrossRef]
- Tian, Q.; Hu, J.; Zhang, S.; Han, X.; Guo, H.; Tang, L.; Wang, J.; Hu, W. Scalable Preparation and Improved Discharge Properties of FeS2 @CoS2 Cathode Materials for High-Temperature Thermal Battery. Nanomaterials 2022, 12, 1360. [Google Scholar] [CrossRef] [PubMed]
- Masset, P.J.; Guidotti, R.A. Thermal Activated (“thermal”) Battery Technology. Part IIIa: FeS2 Cathode Material. J. Power Sources 2008, 177, 595–609. [Google Scholar] [CrossRef]
- Luo, Z.; Lin, X.; Tang, L.; Feng, Y.; Gui, Y.; Zhu, J.; Yang, W.; Li, D.; Zhou, L.; Fu, L. Novel NiCl2 Nanosheets Synthesized via Chemical Vapor Deposition with High Specific Energy for Thermal Battery. ACS Appl. Mater. Interfaces 2020, 12, 34755–34762. [Google Scholar] [CrossRef]
- Jin, C.; Zhou, L.; Fu, L.; Zhu, J.; Li, D. Synthesis and Discharge Performances of NiCl2 by Surface Modification of Carbon Coating as Cathode Material of Thermal Battery. Appl. Surf. Sci. 2017, 402, 308–313. [Google Scholar] [CrossRef]
- Giagloglou, K.; Payne, J.L.; Crouch, C.; Gover, R.K.B.; Connor, P.A.; Irvine, J.T.S. Transition Metal Chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as Alternative Cathode Materials in Primary Li Thermal Batteries. J. Electrochem. Soc. 2018, 165, A3510–A3516. [Google Scholar] [CrossRef]
- Guo, S.N.; Guo, H.; Wang, X.; Zhu, Y.; Hu, J.; Yang, M.; Zhao, L.; Wang, J. Iron Trifluoride as a High Voltage Cathode Material for Thermal Batteries. J. Electrochem. Soc. 2019, 166, A3599–A3605. [Google Scholar] [CrossRef]
- Chang, Q.; Luo, Z.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. A New Cathode Material of NiF2 for Thermal Batteries with High Specific Power. Electrochim. Acta 2020, 361, 137051. [Google Scholar] [CrossRef]
- Dai, J.; Lai, M.; LaFollette, R.M.; Reisner, D. Thin Film Copper Vanadium Oxide Electrodes for Thermal Batteries. ECS Trans. 2011, 33, 3–9. [Google Scholar] [CrossRef]
- Hillel, T.; Ein-Eli, Y. Copper Vanadate as Promising High Voltage Cathodes for Li Thermal Batteries. J. Power Sources 2013, 229, 112–116. [Google Scholar] [CrossRef]
- Zhang, N.; Xiao, X.; Pang, H. Transition Metal (Fe, Co, Ni) Fluoride-Based Materials for Electrochemical Energy Storage. Nanoscale Horiz. 2019, 4, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Tao, R.; Guo, C.; Li, H.; Liu, X.; Guo, P.; Wang, D.; Liang, J.; Li, J.; Dai, S.; et al. In-Situ Synthesis of Porous Metal Fluoride@carbon Composite via Simultaneous Etching/Fluorination Enabled Superior Li Storage Performance. Nano Energy 2022, 103, 107862. [Google Scholar] [CrossRef]
- Zhang, W.; Duchesne, P.N.; Gong, Z.L.; Wu, S.Q.; Ma, L.; Jiang, Z.; Zhang, S.; Zhang, P.; Mi, J.X.; Yang, Y. In Situ Electrochemical XAFS Studies on an Iron Fluoride High-Capacity Cathode Material for Rechargeable Lithium Batteries. J. Phys. Chem. C 2013, 117, 11498–11505. [Google Scholar] [CrossRef]
- Wygant, B.R.; Merrill, L.C.; Harrison, K.L.; Talin, A.A.; Ashby, D.S.; Lambert, T.N. The Role of Electrolyte Composition in Enabling Li Metal-Iron Fluoride Full-Cell Batteries. Adv. Sci. 2022, 9, 2105803. [Google Scholar] [CrossRef]
- Ko, J.; Yoon, Y.S. Functional Materials for Modifying Interfaces between Solid Electrolytes and Lithium Electrodes of All-Solid-State Lithium Metal Batteries. J. Korean Ceram. Soc. 2023, 60, 591–613. [Google Scholar] [CrossRef]
- Liu, L.; Guo, H.; Zhou, M.; Wei, Q.; Yang, Z.; Shu, H.; Yang, X.; Tan, J.; Yan, Z.; Wang, X. A Comparison among FeF3·3H2O, FeF3·0.33H2O and FeF3 Cathode Materials for Lithium Ion Batteries: Structural, Electrochemical, and Mechanism Studies. J. Power Sources 2013, 238, 501–515. [Google Scholar] [CrossRef]
- Kim, S.H.; Jo, J.H.; Park, D.Y.; Moon, D.G.; Yoon, Y.S. Characteristics of La-Doped BSO(LBSO) Transparent Conductive Oxide as a Hole Transport Layer. J. Korean Ceram. Soc. 2022, 59, 631–637. [Google Scholar] [CrossRef]
- Ko, J.; Kim, I.Y.; Cheong, H.; Yoon, Y.S. Organic Binder-Free Cathode Using FeS2-MWCNTs Composite for Thermal Batteries. J. Am. Ceram. Soc. 2017, 100, 4435–4441. [Google Scholar] [CrossRef]
- Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W.R.; Shaffer, M.S.P.; Windle, A.H.; Friend, R.H. Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes. J. Phys. Chem. B 1999, 103, 8116–8121. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Sugano, M.; Yamakawa, Y.; Nakai, I.; Sakamoto, K.; Muramatsu, H.; Komaba, S. Effect of Heat-Treatment Process on FeF3 Nanocomposite Electrodes for Rechargeable Li Batteries. J. Mater. Chem. 2011, 21, 10035–10041. [Google Scholar] [CrossRef]
- Ballav, N.; Biswas, M. Conducting Composites of Polythiophene and Polyfuran with Acetylene Black. Polym. Int. 2005, 54, 725–729. [Google Scholar] [CrossRef]
- Avilés, F.; Cauich-Rodríguez, J.V.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of Mild Acid Oxidation Treatments for MWCNT Functionalization. Carbon 2009, 47, 2970–2975. [Google Scholar] [CrossRef]
- Jiang, Z.; Jin, J.; Xiao, C.; Li, X. Effect of Surface Modification of Carbon Black (CB) on the Morphology and Crystallization of Poly(Ethylene Terephthalate)/CB Masterbatch. Colloids Surf. A Physicochem. Eng. Asp. 2012, 395, 105–115. [Google Scholar] [CrossRef]
- Yap, H.W.; Lakes, R.S.; Carpick, R.W. Mechanical Instabilities of Individual Multiwalled Carbon Nanotubes under Cyclic Axial Compression. Nano Lett. 2007, 7, 1149–1154. [Google Scholar] [CrossRef]
- Liu, X.M.; Huang, Z.D.; Oh, S.W.; Zhang, B.; Ma, P.C.; Yuen, M.M.F.; Kim, J.K. Carbon Nanotube (CNT)-Based Composites as Electrode Material for Rechargeable Li-Ion Batteries: A Review. Compos. Sci. Technol. 2012, 72, 121–144. [Google Scholar] [CrossRef]
- Guoping, W.; Qingtang, Z.; Zuolong, Y.; MeiZheng, Q. The Effect of Different Kinds of Nano-Carbon Conductive Additives in Lithium Ion Batteries on the Resistance and Electrochemical Behavior of the LiCoO2 Composite Cathodes. Solid. State Ion. 2008, 179, 263–268. [Google Scholar] [CrossRef]
- Choi, Y.; Cho, S.; Lee, Y.S. Effect of the Addition of Carbon Black and Carbon Nanotube to FeS2 Cathode on the Electrochemical Performance of Thermal Battery. J. Ind. Eng. Chem. 2014, 20, 3584–3589. [Google Scholar] [CrossRef]
- Yang, S.; Yan, B.; Wu, J.; Lu, L.; Zeng, K. Temperature-Dependent Lithium-Ion Diffusion and Activation Energy of Li1.2Co0.13Ni0.13Mn0.54O2 Thin-Film Cathode at Nanoscale by Using Electrochemical Strain Microscopy. ACS Appl. Mater. Interfaces 2017, 9, 13999–14005. [Google Scholar] [CrossRef]
- Okubo, M.; Tanaka, Y.; Zhou, H.; Kudo, T.; Honma, I. Determination of Activation Energy for Li Ion Diffusion in Electrodes. J. Phys. Chem. B 2009, 113, 2840–2847. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; He, K.; Zhang, X.; Cao, Y.; Xie, Y.; Cui, Y.; Liu, X.; Zeng, C. Transport Performance of Molten Salt Electrolyte in a Fractal Porous FeS2 Electrode: Mesoscale Modeling and Experimental Characterization. ACS Appl. Energy Mater. 2021, 4, 14363–14371. [Google Scholar] [CrossRef]
- Humplik, T.; Stirrup, E.K.; Grillet, A.M.; Grant, R.P.; Allen, A.N.; Wesolowski, D.E.; Roberts, C.C. Quantification of Ionic Transport within Thermally-Activated Batteries Using Electron Probe Micro-Analysis. J. Power Sources 2016, 320, 343–348. [Google Scholar] [CrossRef]
- Reinholz, E.L.; Roberts, S.A.; Schunk, P.R.; Apblett, C.A. Mesoscale Modeling and Simulation of Composition, Manufacturing, and Microstructure Effects on Electrical Conduction in Thermal Battery Cathodes. ECS Trans. 2015, 69, 37–43. [Google Scholar] [CrossRef]
Type | Sheet Resistance (Ω/sq) | Multi-Meter Probe (Ω/mm) | Electrical Conductivity (S/m) | Mechanical Strength (MPa) |
---|---|---|---|---|
FeF3 | 2.590 × 106 | Over-load | 4.152 × 10−4 | 0.2968 |
FeF3/AB (2.5 wt%) | 2.064 × 106 | 6091 | 6.291 × 10−4 | 0.3723 |
FeF3/AB (5.0 wt%) | 312.9 | 2205 | 4.097 | 0.3175 |
FeF3/AB (10.0 wt%) | 14.78 | 49.19 | 76.91 | 0.2099 |
FeF3/AB (20.0 wt%) | 4.756 | 16.15 | 182.8 | - |
FeF3/M (2.5 wt%) | 1.249 × 106 | 105.3 | 8.090 × 10−4 | 0.9007 |
FeF3/M (5.0 wt%) | 342.4 | 27.42 | 3.281 | 0.9301 |
FeF3/M (10.0 wt%) | 9.460 | 11.53 | 113.7 | 1.4189 |
FeF3/M (20.0 wt%) | 6.379 | 0.78 | 168.6 | 0.9975 |
Type | Sheet Resistance (Ω/sq) | Multi-Meter Probe (Ω/mm) | Electrical Conductivity (S/m) | Mechanical Strength (MPa) |
---|---|---|---|---|
FeF3/M1AB4 | 140.4 | 1053 | 8.281 | 1.556 |
FeF3/M2AB3 | 106.9 | 3809 | 10.39 | 1.182 |
FeF3/M3AB2 | 389.8 | 374.4 | 2.882 | 0.8184 |
FeF3/M4AB1 | 223.6 | 537.0 | 5.081 | 0.9611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Choi, J.-H.; Park, S.H.; Ahn, T.Y.; Cheong, H.-W.; Yoon, Y.S. FeF3/(Acetylene Black and Multi-Walled Carbon Nanotube) Composite for Cathode Active Material of Thermal Battery through Formation of Conductive Network Channels. Nanomaterials 2023, 13, 2783. https://doi.org/10.3390/nano13202783
Kim SH, Choi J-H, Park SH, Ahn TY, Cheong H-W, Yoon YS. FeF3/(Acetylene Black and Multi-Walled Carbon Nanotube) Composite for Cathode Active Material of Thermal Battery through Formation of Conductive Network Channels. Nanomaterials. 2023; 13(20):2783. https://doi.org/10.3390/nano13202783
Chicago/Turabian StyleKim, Su Hyeong, Ji-Hyeok Choi, So Hyun Park, Tae Young Ahn, Hae-Won Cheong, and Young Soo Yoon. 2023. "FeF3/(Acetylene Black and Multi-Walled Carbon Nanotube) Composite for Cathode Active Material of Thermal Battery through Formation of Conductive Network Channels" Nanomaterials 13, no. 20: 2783. https://doi.org/10.3390/nano13202783
APA StyleKim, S. H., Choi, J. -H., Park, S. H., Ahn, T. Y., Cheong, H. -W., & Yoon, Y. S. (2023). FeF3/(Acetylene Black and Multi-Walled Carbon Nanotube) Composite for Cathode Active Material of Thermal Battery through Formation of Conductive Network Channels. Nanomaterials, 13(20), 2783. https://doi.org/10.3390/nano13202783