Light Conversion upon Photoexcitation of NaBiF4:Yb3+/Ho3+/Ce3+ Nanocrystalline Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis
2.3. Characterization
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. UC Properties and Color Tuning Effect
3.3. Rate Equation Modeling of UC Mechanisms
3.4. Efficiency of Ce3+-Mediated CR Processes
3.5. Visible-to-NIR DC Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stanley, C.; Mojiri, A.; Rosengarten, G. Spectral light management for solar energy conversion systems. Nanophotonics 2016, 5, 161–179. [Google Scholar]
- Day, J.; Senthilarasu, S.; Mallick, T.K. Improving spectral modification for applications in solar cells: A review. Renew. Energy 2019, 132, 186–205. [Google Scholar] [CrossRef]
- Yi, Z.; Luo, Z.; Qin, X.; Chen, Q.; Liu, X. Lanthanide-activated nanoparticles: A toolbox for bioimaging, therapeutics, and neuromodulation. Acc. Chem. Res. 2020, 53, 2692–2704. [Google Scholar]
- Du, Y.; Ai, X.; Li, Z.; Sun, T.; Huang, Y.; Zeng, X.; Chen, X.; Rao, F.; Wang, F. Visible-to-ultraviolet light conversion: Materials and applications. Adv. Photonics Res. 2021, 2, 2000213. [Google Scholar]
- Khan, Y.; Hwang, S.; Braveenth, R.; Jung, Y.H.; Walker, B.; Kwon, J.H. Synthesis of fluorescent organic nano-dots and their application as efficient color conversion layers. Nat. Commun. 2022, 13, 1801. [Google Scholar] [PubMed]
- Bünzli, J.-C.G.; Piguet, G. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar]
- Cattaruzza, E.; Battaglin, G.; Visentin, F.; Trave, E.; Aquilanti, G.; Mariotto, G. Enhanced photoluminescence at λ = 1.54 μm in the Cu-doped Er:SiO2 system. J. Phys. Chem. C 2012, 116, 21001–21011. [Google Scholar] [CrossRef]
- Dong, H.; Sun, L.-D.; Yan, C.-H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634. [Google Scholar] [CrossRef]
- Trave, E.; Back, M.; Cattaruzza, E.; Gonella, F.; Enrichi, F.; Cesca, T.; Kalinic, B.; Scian, C.; Bello, V.; Maurizio, C.; et al. Control of silver clustering for broadband Er3+ luminescence sensitization in Er and Ag co-implanted silica. J. Lumin. 2018, 197, 104–111. [Google Scholar]
- Zur, L.; Armellini, C.; Belmokhtar, S.; Bouajaj, A.; Cattaruzza, E.; Chiappini, A.; Coccetti, F.; Ferrari, M.; Gonella, F.; Righini, G.C.; et al. Comparison between glass and glass-ceramic silica-hafnia matrices on the down-conversion efficiency of Tb3+/Yb3+ rare earth ions. Opt. Mater. 2019, 87, 102–106. [Google Scholar]
- Zheng, K.; Loh, K.Y.; Wang, Y.; Chen, Q.; Fan, J.; Jung, T.; Nam, S.H.; Suh, Y.D.; Liu, X. Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today 2019, 29, 100797. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–173. [Google Scholar] [PubMed]
- Zhou, J.; Leaño, J.L.; Liu, Z.; Jin, D.; Wong, K.-L.; Liu, R.-S.; Bünzli, J.-C.G. Impact of lanthanide nanomaterials on photonic devices and smart applications. Small 2018, 14, 1801882. [Google Scholar]
- Nsubuga, A.; Zarschler, K.; Sgarzi, M.; Graham, B.; Stephan, H.; Joshi, T. Towards utilising photocrosslinking of polydiacetylenes for the preparation of “stealth” upconverting nanoparticles. Angew. Chem. Int. Ed. 2018, 57, 16036–16040. [Google Scholar]
- Zhu, X.; Zhang, J.; Liu, J.; Zhang, Y. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization, and applications. Adv. Sci. 2019, 6, 1901358. [Google Scholar]
- Cheng, Q.; Sui, J.; Cai, W. Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions. Nanoscale 2012, 4, 779–784. [Google Scholar]
- Tian, G.; Gu, Z.; Zhou, L.; Yin, W.; Liu, X.; Yan, L.; Jin, S.; Ren, W.; Xing, G.; Li, S.; et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 2012, 24, 1226–1231. [Google Scholar] [CrossRef]
- Ramasamy, P.; Chandra, P.; Rhee, S.W.; Kim, J. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale 2013, 5, 8711–8717. [Google Scholar] [CrossRef]
- Cong, T.; Yadan, D.; Yu, X.; Mu, Y.; Hong, X.; Liu, Y. Upconversion improvement by the reduction of Na+-vacancies in Mn2+ doped hexagonal NaYbF4:Er3+ nanoparticles. Dalton Trans. 2015, 44, 4133–4140. [Google Scholar]
- Mohanty, S.; Kaczmarek, A.M. Unravelling the benefits of transition-metal-co-doping in lanthanide upconversion nanoparticles. Chem. Soc. Rev. 2022, 51, 6893–6908. [Google Scholar]
- Chen, G.; Liu, H.; Somesfalean, G.; Liang, H.; Zhang, Z. Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology 2009, 20, 385704. [Google Scholar] [PubMed]
- Gao, W.; Zheng, H.; Han, Q.; He, E.; Gao, F.; Wang, R. Enhanced red upconversion luminescence by codoping Ce3+ in β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanocrystals. J. Mater. Chem. C 2014, 2, 5327–5334. [Google Scholar]
- Hu, F.; Zhang, J.; Giraldo, O.; Song, W.; Wei, R.; Yin, M.; Guo, H. Spectral conversion from green to red in Yb3+/Ho3+:Sr2GdF7 glass ceramics via Ce3+ doping. J. Lumin. 2018, 201, 493–499. [Google Scholar]
- An, N.; Zhou, H.; Zhu, K.; Ye, L.; Qiu, J.; Wang, L.G. Improved temperature sensing performance of YAG: Ho3+/Yb3+ by doping Ce3+ ions based on up-conversion luminescence. J. Alloys Compd. 2020, 843, 156057. [Google Scholar]
- Giordano, L.; Du, H.; Castaing, V.; Luan, F.; Guo, D.; Viana, B. Enhanced red-UC luminescence through Ce3+ co-doping in NaBiF4:Yb3+/Ho3+(Er3+)/Ce3+ phosphors prepared by ultrafast coprecipitation approach. Opt. Mater.: X 2022, 16, 100199. [Google Scholar] [CrossRef]
- Lin, H.; Chen, D.; Yu, Y.; Shan, Z.; Huang, P.; Wang, Y.; Yuan, J. Nd3+-sensitized upconversion white light emission of Tm3+/Ho3+ bridged by Yb3+ in β-YF3 nanocrystals embedded transparent glass ceramics. J. Appl. Phys. 2010, 107, 103511. [Google Scholar]
- Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301–4326. [Google Scholar]
- Chen, G.; Qiu, H.; Prasad, P.; Chen, X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214. [Google Scholar]
- Lee, J.; Bisso, P.W.; Srinivas, R.L.; Kim, J.J.; Swiston, A.J.; Doyle, P.S. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 2014, 13, 524–529. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465. [Google Scholar] [CrossRef]
- Hesse, J.; Klier, D.T.; Sgarzi, M.; Nsubuga, A.; Bauer, C.; Grenzer, J.; Hübner, R.; Wislicenus, M.; Joshi, T.; Kumke, M.U.; et al. Rapid synthesis of sub-10 nm hexagonal NaYF4-based upconverting nanoparticles using Therminol® 66. ChemistryOpen 2018, 7, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Back, M.; Trave, E.; Mazzucco, N.; Riello, P.; Benedetti, A. Tuning the upconversion light emission by bandgap engineering in bismuth oxide-based upconverting nanoparticles. Nanoscale 2017, 9, 6353–6361. [Google Scholar] [CrossRef] [PubMed]
- Back, M.; Trave, E.; Riello, P.; Joos, J.J. Insight into the upconversion luminescence of highly efficient lanthanide-doped Bi2O3 nanoparticles. J. Phys. Chem. C 2018, 122, 7389–7398. [Google Scholar] [CrossRef]
- Back, M.; Trave, E.; Zaccariello, G.; Cristofori, D.; Canton, P.; Benedetti, A.; Riello, P. Bi2SiO5@g-SiO2 upconverting nanoparticles: A bismuth-driven core-shell self-assembly mechanism. Nanoscale 2019, 11, 675–687. [Google Scholar] [PubMed]
- Back, M.; Casagrande, E.; Trave, E.; Cristofori, D.; Ambrosi, E.; Dallo, F.; Roman, M.; Ueda, J.; Xu, J.; Tanabe, S.; et al. Confined-melting-assisted synthesis of bismuth silicate glass-ceramic nanoparticles: Formation and optical thermometry investigation. ACS Appl. Mater. Interfaces 2020, 12, 55195–55204. [Google Scholar] [CrossRef]
- Back, M.; Xu, J.; Ueda, J.; Benedetti, A.; Tanabe, S. Thermochromic narrow band gap phosphors for multimodal optical thermometry: The case of Y3+-stabilized β-Bi2O3:Nd3+. Chem. Mater. 2022, 34, 8198–8206. [Google Scholar] [CrossRef]
- Lei, P.; An, R.; Yao, S.; Wang, Q.; Dong, L.; Xu, X.; Du, K.; Feng, J.; Zhang, H. Ultrafast synthesis of novel hexagonal phase NaBiF4 upconversion nanoparticles at room temperature. Adv. Mater. 2017, 29, 1700505. [Google Scholar]
- Back, M.; Ueda, J.; Ambrosi, E.; Cassandro, L.; Cristofori, D.; Ottini, R.; Riello, P.; Sponchia, G.; Asami, K.; Tanabe, S.; et al. Lanthanide-doped bismuth-based fluoride nanocrystalline particles: Formation, spectroscopic investigation, and chemical stability. Chem. Mater. 2019, 31, 8504–8514. [Google Scholar] [CrossRef]
- Gao, W.; Wang, R.; Han, Q.; Dong, J.; Yan, L.; Zheng, H. Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle. J. Phys. Chem. C 2015, 119, 2349–2355. [Google Scholar]
- Gao, W.; Dong, J.; Liu, J.; Yan, X. Effective tuning of the ratio of red to green emission of Ho3+ ions in single LiLuF4 microparticle via codoping Ce3+ ions. J. Alloys Compd. 2016, 679, 1–8. [Google Scholar]
- Pilch-Wróbel, A.; Zasada, J.; Berdnarkiewicz, A. The influence of Ce3+ codoping and excitation scheme on spectroscopic properties of NaYF4:Yb3+, Ho3+. J. Lumin. 2020, 226, 117494. [Google Scholar] [CrossRef]
- Lin, H.; Chen, D.; Yu, Y.; Yang, A.; Wang, Y. Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic. Opt. Lett. 2011, 36, 876–878. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.C.; Huang, X.Y.; Ye, S.; Zhang, Q.Y. Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+. J. Alloys Compd. 2011, 509, 9919–9923. [Google Scholar] [CrossRef]
- Deng, K.; Gong, T.; Hu, L.; Wei, X.; Chen, Y.; Yin, M. Efficient near-infrared quantum cutting in NaYF4:Ho3+,Yb3+ for solar photovoltaics. Opt. Express 2011, 19, 1749–1754. [Google Scholar] [CrossRef] [PubMed]
- Babu, P.; Martín, I.R.; Lavín, V.; Rodríguez-Mendoza, U.R.; Seo, H.J.; Krishanaiah, K.V.; Venkatramu, V. Quantum cutting and near-infrared emissions in Ho3+/Yb3+ codoped transparent glass-ceramics. J. Lumin. 2020, 226, 117424. [Google Scholar] [CrossRef]
- Tao, L.; Tsang, Y.H.; Zhou, B.; Richards, B.; Jha, A. Enhanced 2.0 μm emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite. J. Non-Cryst. Solids 2012, 358, 1644–1648. [Google Scholar] [CrossRef]
Sample | ||||
---|---|---|---|---|
normalized to Ce_0 | [%] | [ms] | [%] | |
Ce_0 | 1.000 | - | 60.1 | - |
Ce_2 | 0.410 | 59.0 | 53.1 | 11.7 |
Ce_5 | 0.300 | 75.8 | 51.5 | 14.3 |
Ce_10 | 0.137 | 88.9 | 29.7 | 50.5 |
Ce_20 | 0.101 | 91.8 | 21.3 | 64.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trave, E.; Back, M.; Pollon, D.; Ambrosi, E.; Puppulin, L. Light Conversion upon Photoexcitation of NaBiF4:Yb3+/Ho3+/Ce3+ Nanocrystalline Particles. Nanomaterials 2023, 13, 672. https://doi.org/10.3390/nano13040672
Trave E, Back M, Pollon D, Ambrosi E, Puppulin L. Light Conversion upon Photoexcitation of NaBiF4:Yb3+/Ho3+/Ce3+ Nanocrystalline Particles. Nanomaterials. 2023; 13(4):672. https://doi.org/10.3390/nano13040672
Chicago/Turabian StyleTrave, Enrico, Michele Back, Davide Pollon, Emmanuele Ambrosi, and Leonardo Puppulin. 2023. "Light Conversion upon Photoexcitation of NaBiF4:Yb3+/Ho3+/Ce3+ Nanocrystalline Particles" Nanomaterials 13, no. 4: 672. https://doi.org/10.3390/nano13040672