A Bilayered Wood-Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate Hydrogel Interfacial Evaporator for Sustainable Solar-Driven Sewage Purification and Desalination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Wood-PEDOT:PSS Hydrogel Interfacial Evaporator
2.3. Characterizations
2.4. Photothermal Performance Test
3. Results and Discussion
3.1. Design of Bilayered Wood-PEDOT:PSS Hydrogel Interfacial Evaporator
3.2. Optical, Photothermal Conversion, and Water Transport Properties of Wood-PEDOT:PSS Hydrogel Interfacial Evaporator
3.3. Steam Generation Performances of the Wood-PEDOT:PSS Hydrogel Interfacial Evaporator
3.4. Applications in Sewage Purification of the Wood-PEDOT:PSS Hydrogel Interfacial Evaporator
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alvarez, P.J.J.; Chan, C.K.; Elimelech, M.; Halas, N.J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.V.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Wang, M.; Wang, P.; Zhang, J.; Li, C.; Jin, Y. A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. ChemSusChem 2019, 12, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Lu, Y.; Zhang, H.; Xu, H.; Lu, C.; Tang, Y.; Yang, X. Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl. Catal. B Environ. 2021, 295, 120285. [Google Scholar] [CrossRef]
- Xiao, B.; Yu, F.; Xia, Y.; Wang, J.; Xiong, X.; Wang, X. Wood-based, bifunctional, mulberry-like nanostructured black titania evaporator for solar-driven clean water generation. Energy Technol. 2022, 10, 2100679. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Ghasemi, H.; Ni, G.; Marconnet, A.M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Huang, Z.; Liu, K.; Hu, X.; Zhou, J. Interfacial solar-to-heat conversion for desalination. Adv. Energy Mater. 2019, 9, 1900310. [Google Scholar] [CrossRef]
- Cao, S.; Thomas, A.; Li, C. Emerging materials for interfacial solar-driven water purification. Angew. Chem. Int. Ed. 2023, 62, e202214391. [Google Scholar] [CrossRef]
- Gao, M.; Zhu, L.; Peh, C.K.; Ho, G.W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, G. Engineering hydrogels for efficient solar desalination and water purification. Acc. Mater. Res. 2021, 2, 374–384. [Google Scholar] [CrossRef]
- Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Lin, M. Understanding interfacial properties for enhanced solar evaporation devices: From geometrical to physical interfaces. ACS Energy Lett. 2023, 8, 1680–1687. [Google Scholar] [CrossRef]
- Sheng, M.; Yang, Y.; Bin, X.; Zhao, S.; Pan, C.; Nawaz, F.; Que, W. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 2021, 89, 106468. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Hu, L. Challenges and opportunities for solar evaporation. Joule 2019, 3, 683–718. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.; Li, Y.; Yang, Z.; Chen, G.; Yao, Y.; Jiang, F.; Kuang, Y.; Pastel, G.; Xie, H.; Yang, B.; et al. Rich mesostructures derived from natural woods for solar steam generation. Joule 2017, 1, 588–599. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, C.; Chen, G.; Kuang, Y.; Zhao, X.; Song, J.; Jia, C.; Xu, X.; Hitz, E.; Xie, H.; et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design. Adv. Energy Mater. 2018, 8, 1701616. [Google Scholar] [CrossRef]
- Wu, X.; Chen, G.Y.; Zhang, W.; Liu, X.; Xu, H. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 2017, 1, 1700046. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, H.; Que, W.; Qiu, Y.; Li, Y.; Guo, L.; Li, Q. A diode-like scalable asymmetric solar evaporator with ultra-high salt resistance. Adv. Funct. Mater. 2023, 33, 2210972. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Wu, Z.; Xu, X.; Ma, H.; Hou, J.; Xu, Q.; Yang, R.; Zhang, K.; Zhang, M.; et al. Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chem. Eng. J. 2022, 442, 136284. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, Z.; Xu, X.; Yang, R.; Ma, H.; Xu, Q.; Zhang, K.; Zhang, M.; Xu, J.; Lu, B. Design of poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate-polyacrylamide dual network hydrogel for long-term stable, highly efficient solar steam generation. Sep. Purif. Technol. 2022, 300, 121889. [Google Scholar] [CrossRef]
- Guo, Y.; de Vasconce, L.S.; Liu, H.; Chen, C.; Wen, H.; Guo, R.; Williams, N.A.; Wang, B.; Chen, F.; Hu, L. Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem. Int. Ed. 2022, 61, e202114074. [Google Scholar] [CrossRef]
- Yang, Y.; Que, W.; Zhao, J.; Han, Y.; Ju, M.; Yin, X. Membrane assembled from anti-fouling copper-zinc-tin-selenide nanocarambolas for solar-driven interfacial water evaporation. Chem. Eng. J. 2019, 373, 955–962. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Chen, F.; Zhu, X.; Dai, J.; Li, Y.; Yang, Z.; Yan, X.; Song, J.; Wang, Y.; et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, Y.; Ji, D.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q.; Yu, Z.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Jiang, Q.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R.R.; Singamaneni, S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 2017, 9, 7675–7681. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305–9374. [Google Scholar] [CrossRef]
- Wheeler, T.D.; Stroock, A.D. The transpiration of water at negative pressures in a synthetic tree. Nature 2008, 455, 208–212. [Google Scholar] [CrossRef]
- Jiang, Q.; Singamaneni, S. Water from wood: Pouring through pores. Joule 2017, 1, 429–430. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Li, Y.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X.; Wang, Y.; Lacey, S.D.; Dai, J.; Wang, C.; et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107. [Google Scholar] [CrossRef]
- Kuang, Y.; Chen, C.; He, S.; Hitz, E.M.; Wang, Y.; Gan, W.; Mi, R.; Hu, L. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 2019, 31, 1900498. [Google Scholar] [CrossRef]
- He, S.; Chen, C.; Kuang, Y.; Mi, R.; Liu, Y.; Pei, Y.; Kong, W.; Gan, W.; Xie, H.; Hitz, E.; et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 2019, 12, 1558–1567. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Song, J.; Yang, Z.; Kuang, Y.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J.Y.; et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29, 1701756. [Google Scholar] [CrossRef]
- Huang, W.; Hu, G.; Tian, C.; Wang, X.; Tu, J.; Cao, Y.; Zhang, K. Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation. Sustain. Energy Fuels 2019, 3, 3000–3008. [Google Scholar] [CrossRef]
- Li, T.; Liu, H.; Zhao, X.; Chen, G.; Dai, J.; Pastel, G.; Jia, C.; Chen, C.; Hitz, E.; Siddhartha, D.; et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 2018, 28, 1707134. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C.; Wen, H.; Guo, R.; Williams, N.A.; Wang, B.; Chen, F.; Hu, L. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 2018, 6, 18839–18846. [Google Scholar] [CrossRef]
- Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. Pure PEDOT:PSS hydrogels. Nat. Commun. 2019, 10, 1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Zhou, X.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X.; Mendez, S.; Yang, R.; Qu, L.; Yu, G. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Z.; Xiang, W.; Shen, C.; Wang, Z.; Jia, X.; Sun, J.; Liu, C.J. Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy 2020, 76, 104998. [Google Scholar] [CrossRef]
- Du, C.; Yang, Z.; Mo, A.; Duan, X.; Yang, G. Self-enhancing photothermal conversion of 2D Weyl semimetal WTe2 with topological surface states for efficient solar vapor generation. Nano Res. 2023, 16, 10976–10984. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Chen, C.; Kuang, Y.; Song, J.; Xie, H.; Jia, C.; Kronthal, S.; Xu, X.; He, S.; et al. All natural, high efficient groundwater extraction via solar steam/vapor generation. Adv. Sustain. Syst. 2018, 3, 1800055. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Han, M.; Zhang, J.; Wang, Z.; Wu, X.; Zhou, Y.; Jiang, L.; Peng, S.; Li, Y. A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation. Nano Energy 2020, 71, 104650. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Liu, J.; Zeng, M.J.; Feng, X.; Jia, X.; Yu, Z. Coating of wood with Fe2O3-decorated carbon nanotubes by one-step combustion for efficient solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 22845–22854. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, Y.; Zhang, Y.; Zhang, Z. Self-supporting nanoporous copper film with high porosity and broadband light absorption for efficient solar steam generation. Nano-Micro Lett. 2023, 15, 94. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, X.; Zou, H.; Wang, Z.; Du, Y.; Shao, Y.; Qi, J.; Qiu, J. Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 2023, 33, 2209207. [Google Scholar] [CrossRef]
- Farid, M.U.; Kharraz, J.A.; Wang, P.; An, A.K. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane. J. Clean. Prod. 2020, 271, 122684. [Google Scholar] [CrossRef]
PEDOT:PSS Hydrogel | Absorption (%) | Reflectance (%) | Transmittance (%) |
---|---|---|---|
zero-layer | 99.80 | 0.17 | 0.03 |
one-layer | 99.89 | 0.09 | 0.02 |
two-layer | 99.90 | 0.08 | 0.02 |
three-layer | 99.92 | 0.06 | 0.02 |
four-layer | 99.94 | 0.04 | 0.02 |
Materials | Light Absorption (%) | Evaporation Rate (kg m−2 h−1) | Energy Efficiency (%) | References |
---|---|---|---|---|
Wood-PDA | 90 | 1.38 | 87 | [19] |
Drilling holes | 98 | 1.04 | 75.1 | [32] |
Plasmonic wood | 99 | 1.0 | 68 | [25] |
Carbonized wood | 99 | 1.3 | 57.3 | [31] |
C-L wood | 96 | 1.08 | 74 | [18] |
CNT-coated tree | 95 | 1.0 | 67.8 | [42] |
graphite coated wood | 95 | 1.2 | 80 | [36] |
CuFeSe2 (NPs) decorated wood | 99 | 1.3 | 67.7 | [37] |
carbonized bimodal evaporator | 97 | 0.8 | 57 | [33] |
poplar-TA-Fe3+ | 98 | 1.34 | 90 | [43] |
Wood/Fe2O3/CNT | 97 | 1.42 | 87.2 | [44] |
F wood/CNTs | 98 | 0.83 | 65 | [34] |
PNPG wood | 90 | 1.64 | 90.4 | [35] |
NP-Cu film | / | 1.47 | 92.9 | [45] |
PG-10 | 95 | 1.42 | 96.6 | [46] |
TiN NPs | / | 1.34 | 84.5 | [47] |
WTe2 nanosheet | / | 1.09 | 74.8 | [41] |
Wood-PEDOT:PSS hydrogel | 99.9 | 1.47 | 75.76 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhao, Q.; Liu, Q.; Qiu, J.; Yuan, S.; Wu, Z.; Yang, R.; Cao, J.; Wang, L.; Xu, J.; et al. A Bilayered Wood-Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate Hydrogel Interfacial Evaporator for Sustainable Solar-Driven Sewage Purification and Desalination. Nanomaterials 2023, 13, 2321. https://doi.org/10.3390/nano13162321
Xu X, Zhao Q, Liu Q, Qiu J, Yuan S, Wu Z, Yang R, Cao J, Wang L, Xu J, et al. A Bilayered Wood-Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate Hydrogel Interfacial Evaporator for Sustainable Solar-Driven Sewage Purification and Desalination. Nanomaterials. 2023; 13(16):2321. https://doi.org/10.3390/nano13162321
Chicago/Turabian StyleXu, Xinye, Qi Zhao, Qi Liu, Junxiao Qiu, Shutong Yuan, Zhixin Wu, Ruping Yang, Jie Cao, Lina Wang, Jingkun Xu, and et al. 2023. "A Bilayered Wood-Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate Hydrogel Interfacial Evaporator for Sustainable Solar-Driven Sewage Purification and Desalination" Nanomaterials 13, no. 16: 2321. https://doi.org/10.3390/nano13162321
APA StyleXu, X., Zhao, Q., Liu, Q., Qiu, J., Yuan, S., Wu, Z., Yang, R., Cao, J., Wang, L., Xu, J., & Lu, B. (2023). A Bilayered Wood-Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate Hydrogel Interfacial Evaporator for Sustainable Solar-Driven Sewage Purification and Desalination. Nanomaterials, 13(16), 2321. https://doi.org/10.3390/nano13162321