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Abstract: Solar-driven interfacial evaporation and purification is a promising solar energy conversion
technology to produce clean water or solve water scarcity. Although wood-based photothermal
materials have attracted particular interest in solar water purification and desalination due to their
rapid water supply and great heat localization, challenges exist given their complicated processing
methods and relatively poor stability. Herein, we propose a facile approach for fabricating a bilayered
wood-poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (wood-PEDOT:PSS) hydrogel inter-
facial evaporator by direct drop-casting and dry-annealing. Benefiting from the unique combined
merits of the wood-PEDOT:PSS hydrogel evaporator, i.e., excellent light absorption (~99.9%) and
efficient photothermal conversion of nanofibrous PEDOT:PSS and the strong hydrophilicity and
fast water transport from wood, the as-fabricated bilayered wood-PEDOT:PSS hydrogel evaporator
demonstrates a remarkably high evaporation rate (~1.47 kg m−2 h−1) and high energy efficiency
(~75.76%) at 1 kW m−2. We further demonstrate the practical applications of such an evaporator
for sewage purification and desalination, showing outstanding performance stability and partial
salt barrier capability against a continuous 10-day test in simulated seawater and an ultrahigh
ion removal rate of 99.9% for metal ion-containing sewage. The design and fabrication of such
novel, efficient wood-based interfacial evaporators pave the way for large-scale applications in solar
water purification.

Keywords: solar water purification; interfacial evaporator; sewage purification and desalination;
PEDOT:PSS hydrogel; wood

1. Introduction

The scarcity of clean water has become one of the most critical global challenges on
account of population growth, environmental pollution, and climate change [1–3]. Up
to now, a tremendous number of feasible techniques have been extensively employed
for high-efficiency clean water production such as photocatalysis [4–7] and solar-driven
water evaporation [8–10]. In particular, the solar-driven interfacial evaporation technology

Nanomaterials 2023, 13, 2321. https://doi.org/10.3390/nano13162321 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13162321
https://doi.org/10.3390/nano13162321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-3124-947X
https://doi.org/10.3390/nano13162321
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13162321?type=check_update&version=1


Nanomaterials 2023, 13, 2321 2 of 13

represents a compelling avenue for environmentally friendly and cost-effective clean water
production, requiring no additional power input and exhibiting immense potencies in sus-
tainable sewage treatment and desalination, which has demonstrated considerable promise
in addressing the pressing water scarcity crisis [11–15]. A solar-driven interfacial evap-
orator typically comprises essential components, including a solar absorber for efficient
solar energy absorption and conversion into thermal energy, a water transport layer for
timely water replenishment to maximize evaporation, and a thermal insulator to effectively
mitigate thermal energy losses following the photothermal conversion [8,16]. Numerous
high-efficiency solar evaporators have been extensively investigated and reported, encom-
passing carbon-based [6,17–19], polymers-based [20–23], semiconductor-based [24], and
plasma nanoparticle-based [25,26] evaporators. However, the majority of these evapora-
tors encounter challenges such as intricate fabrication procedures, high production costs,
and compromised long-term stability, thereby impeding their practical implementation in
seawater desalination and wastewater treatment. To address the aforementioned issues,
there exists an imperative demand to develop solar evaporators that exhibit rapid water
transport, wide-spectrum light absorption, and superior thermal insulation properties, as
well as featuring simplified and cost-effective preparation techniques, alongside excellent
long-term stability.

Wood-based solar evaporators have garnered significant attention as outstanding
candidates for solar vapor generation, owing to their distinctive properties such as lower
density, open microchannels, capillary-induced hydrophilicity, and low thermal conduc-
tivity [27–30]. Several methods have been developed to convert wood into photother-
mal materials, including surface carbonization [31–33] and coating techniques. Coating
materials encompass plasma metals [4,26], carbon nanotubes [34], polydopamine [35],
graphite [36], or black nanoparticles [37]. Despite significant progress in the preparation of
wood-based photothermal materials, various obstacles remain. First, it is urgent to establish
a simple and scalable approach for fabricating photothermal materials. Second, achieving
superhydrophilicity in wood through carbonization or most inorganic coatings, while
simultaneously establishing robust interfacial connections, poses irreversible damage to
the light-absorbing interface. Once the light-absorbing layer of wood-based photothermal
materials is compromised, its light absorption capability diminishes, and the water trans-
port channels become blocked, resulting in the loss of solar steam generation performance.
These limitations severely hinder the scalability and commercial applications of wood-
based materials. To overcome these challenges, the development of novel wood-based
photothermal conversion materials is essential.

Inspired by the natural processes of plant transpiration and capillary action, we
selected basswood, which has a lower density (compared with water) and exhibits super-
hydrophilicity induced by capillary action, as the water transport substrate. To enhance
the localized heating on the wood surface, a light-absorbing and hydrophilic conjugated
polymer PEDOT:PSS coating was deposited on the wood surface. Here we developed a
bilayered wood-based interfacial evaporator with a stabilized nanofibrous PEDOT:PSS
hydrogel coating through a simple methodology of drop casting and dry-annealing. The
physical crosslinking network formed by the semi-crystalline domains rich in PEDOT and
the hydrophilic matrix rich in PSS in nanofibrous PEDOT:PSS interacted with the typical
hydrophilic network of cellulose fibers in wood (Figure 1a), thereby stabilizing the intercon-
nection between the two interfaces. Similar to the moisture transport mechanism observed
in trees, the wood-PEDOT:PSS hydrogel evaporator achieved water transport through
capillary action, coupled with efficient photothermal conversion at the top surface and
stable evaporation facilitated by intermolecular forces between the two components. The
wood-PEDOT:PSS hydrogel evaporator featured effective broadband light absorption, ease
of fabrication, and lightweight and intrinsic thermal insulation, as well as the natural water
transportation channel, making it high-performance and highly competitive in solar-driven
interfacial evaporation and desalination. As a consequence, this well-designed and high-
efficiency bilayered wood-PEDOT:PSS hydrogel solar evaporator demonstrated remarkable
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light absorption (~99.9%), a high evaporation rate (~1.47 kg m−2 h−1), and commendable
energy efficiency (~75.76%), surpassing the majority of reported wood solar evaporators.
Therefore, the wood-PEDOT:PSS hydrogel solar evaporator holds great promise for various
applications in solar evaporation and seawater desalination. In conclusion, this simplified
and efficient fabrication method, with an outstanding evaporation performance and a stable
structural design, offers a novel approach and strategy for the commercial application and
large-scale production of wood-based evaporators. And it opens up broad prospects for
the widespread utilization of solar-driven evaporation technology in applications such as
water purification and desalination.
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Figure 1. Design of the bilayered wood-PEDOT:PSS hydrogel evaporator. (a) Schematic illustra-
tion of the multimolecular interactions at the interconnection interface of PEDOT:PSS and wood.
(b) Schematic illustration for the preparation of the bilayered wood-PEDOT:PSS hydrogel evaporator.
(c) SEM image of the naturally porous structure of wood. (d) Schematic diagram of the PEDOT:PSS
hydrogel network interaction with the fiber network on the wood surface. (e) The steam generation
process of the wood-PEDOT:PSS hydrogel evaporator.
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2. Materials and Methods
2.1. Materials

Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate conductive particles (PE-
DOT:PSS) were obtained from Sigma-Aldrich (Shanghai, China). Natural Basha wood was
obtained from Taobao. All other reagents were analytical grade and directly employed
without further purification.

2.2. Fabrication of Wood-PEDOT:PSS Hydrogel Interfacial Evaporator

A piece of natural balsa wood was cut along its growth direction and placed with its
lumen surface facing upward. Subsequently, 0.1 g liquid nitrogen freeze-dried PEDOT:PSS
nanofibers were added to 9.9 mL DI water and well mixed with syringes, and then a sticky
solution A was obtained. The wood surface was uniformly deposited with sticky solution
A by drop-casting, with one, two, three, and four layers of coating applied sequentially,
with each coating layer applied after drying at 30 ◦C. The coated wood blocks were dried
at 60 ◦C for 24 h, then placed in a 130 ◦C oven for 30 min. Afterward, the samples were
cooled for 5 min at room temperature. This drying and annealing cycle was repeated three
times, and then the samples were immersed in deionized water. The resulting nanofibrous
PEDOT:PSS hydrogel layer was firmly adhered to the mesoporous scaffold of the wood and
could be utilized as an efficient broadband light-absorbing layer for solar steam generation.

2.3. Characterizations

The SEM images (Hitachi S4800, Tokyo, Japan) showcased the morphology and mi-
crostructure of the bilayered wood-PEDOT:PSS hydrogel interfacial evaporator. The concen-
trations of cations such as Na+, Mg2+, K+, Ca2+, Cu2+, Zn2+, Pb2+, and Ni2+ were tracked by
an inductively coupled plasma-mass spectrometer (Agilent 7700ce, Santa Clara, CA, USA)
upon dilution in 2% HNO3 to make the loaded ion concentration lower than 10 ppm. The
contact angles of various wood-PEDOT:PSS hydrogels were tested on an optical contact
angle measuring instrument (SDC-100, Guangdong, China). A UV-vis-NIR spectrom-
eter (Toupu TP720, Tianjin, China) was utilized to conduct absorption and reflectance
spectroscopy. The absorbance of light (A) was determined using the following equation:

A = 1 − T − R (1)

where R and T denote the reflectance and transmittance of varying wood-PEDOT:PSS hy-
drogel evaporators, respectively. An infrared camera was used to observe the temperature
distributions of the samples (HIKMICRO TPH21Pro-3AQF, Guangdong, China).

2.4. Photothermal Performance Test

The ambient conditions for photothermal evaporation tests were maintained at a
relative humidity of ~60% and a room temperature of 25 ◦C. The photothermal evap-
oration experiments were carried out using a solar simulator (Education Au-light Co.,
CEL-HXUV300-T3, Beijing, China) equipped with an AM 1.5G filter (1 kW m−2, 1 sun).
The solar flux was measured by an automatic optical power meter (Education Au-light
Co., CEL-NP2000-2A, Beijing, China). The weight loss of water was recorded by recording
the weight of the samples by electronic balance every 5 min (Sartorius BAS223, Beijing,
China). The surface temperature of the photothermal hydrogel was captured using an
infrared camera.

3. Results and Discussion
3.1. Design of Bilayered Wood-PEDOT:PSS Hydrogel Interfacial Evaporator

We prepared a nanofibrous PEDOT:PSS hydrogel that could swell by dispersing the
PEDOT:PSS solution and drying it through annealing [38]. Based on this, we proposed a
simple and efficient method for controllingly coating wood with nanofibrous PEDOT:PSS
hydrogel to better coordinate each material’s qualities. Initially, we vigorously mechan-
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ically mixed concentrated PEDOT:PSS nanofibers and directly drop-cast them onto the
wood surface, allowing penetration into its pores and forming a preliminary stable bond
with the wood surface and the internal fiber structure. To further bind the nanofibrous
PEDOT:PSS hydrogel with the wood fibers and increase the coating’s durability, continual
dry-annealing procedures were carried out. This ensured the formation of stable and
uniform nanofibrous PEDOT:PSS hydrogel layers on the wood surface (Figure 1b). During
the initial stages of preparation, the wood was subjected to scanning electron microscopy
(SEM) imaging (Figure 1c), elucidating an organized porous structure with proficient water
absorption and transport capabilities via capillary action. As the PEDOT:PSS solution
coating was incrementally applied, the PEDOT:PSS hydrogel network effectively infiltrated
and interacted within the wood matrix, augmenting the intertwining phenomenon between
chains (Figure 1d), subsequently yielding a PEDOT:PSS hydrogel layer of distinct thickness,
ensuring robust interfacial connections within the wood microstructure. The prepared
bilayered wood-PEDOT:PSS hydrogel evaporator is depicted in Figure S1, illustrating its
actual appearance. The outer surface of the evaporator exhibited a black color, indicating
the presence of the PEDOT:PSS coating, whereas the internal regions predominantly re-
tained their original coloration. Notably, the coating thickness after swelling was quantified
to be ~0.165 mm (Figure S2). In our fabricated wood-PEDOT:PSS hydrogel evaporator,
as the water was conveyed from the wood to the PEDOT:PSS hydrogel layer, the latter’s
swelling propensity enabled swift water diffusion, leading to the generation of a thin water
film. Through photothermal conversion, the water within the film experienced heating
and evaporation, culminating in a highly proficient interfacial solar evaporation generation
process (Figure 1e).

3.2. Optical, Photothermal Conversion, and Water Transport Properties of Wood-PEDOT:PSS
Hydrogel Interfacial Evaporator

In solar water evaporation, photothermal conversion materials typically require high
broadband light absorption performance, excellent photothermal conversion efficiency,
and rapid water transport capabilities. To investigate the light absorption capability of
wood-PEDOT:PSS hydrogel evaporators, we performed light absorption tests on bilayered
wood-based solar evaporators, which were coated with varying numbers of nanofibrous
PEDOT:PSS hydrogel layers (from zero to four layers). These light absorption tests en-
compassed light absorption, light transmittance, and light reflectance. As the number
of deposited layers of PEDOT:PSS hydrogel increased, the light absorption efficiency ex-
hibited substantial enhancement, with respective values of ~99.80%, ~99.89%, ~99.90%,
~99.92%, and ~99.94% for each successive layer. Concurrently, the reflectance experienced a
notable decrease, decreasing from ~0.17% to ~0.04%, and the light transmittance remained
relatively constant (Figure S3 and Table 1). The findings demonstrated that all nanofibrous
PEDOT:PSS hydrogels exhibited significant absorption across different spectral ranges.
Specifically, the four-layer nanofibrous PEDOT:PSS hydrogels displayed outstanding light
absorption (~99.9%) throughout the spectrum, with negligible reflectance and transmittance
(Figure 2a and Table 1). These results suggested that the light absorption capacity of the
bilayered wood-PEDOT:PSS hydrogel interfacial solar evaporator increased as the number
of PEDOT:PSS hydrogel layers grew. However, deposition proved challenging when em-
ploying five-layer nanofibrous PEDOT:PSS hydrogels, possibly due to the incorporation
of excessive hydrophobic PEDOT-enriched domains, leading to enhanced hydrophobicity
and the consequent inability to form stable deposition layers. The achievement of effi-
cient photothermal conversion capability was heavily dependent on the molecular thermal
vibrations within the PEDOT:PSS material. To monitor the temperature distribution dur-
ing solar-driven water evaporation, we employed infrared imaging techniques with the
wood-PEDOT:PSS hydrogel evaporator. In Figure S4, infrared images were captured at
different exposure times (0, 10, 30, and 60 min) for the nanofibrous PEDOT:PSS interfacial
evaporator with varying layers. The results demonstrated that the surface temperature of
the four-layer nanofibrous PEDOT:PSS hydrogel on the interfacial evaporator experienced
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a rapid increase within 10 min of solar irradiation, eventually reaching a steady-state
equilibrium temperature of 40 ◦C after 40 min. This temperature was significantly higher
than that observed for the pure wood interfacial evaporator without the deposition of
nanofibrous PEDOT:PSS hydrogel (Figure 2b,d). Therefore, these findings indicated the
effective achievement of a favorable thermal localization effect facilitated by utilizing the
nanofibrous PEDOT:PSS hydrogel.

Table 1. Absorptance, transmittance, and reflectance spectra of the PEDOT:PSS hydrogels with
different layers in the wavelength range of 250–2500 nm.

PEDOT:PSS Hydrogel Absorption (%) Reflectance (%) Transmittance (%)

zero-layer 99.80 0.17 0.03
one-layer 99.89 0.09 0.02
two-layer 99.90 0.08 0.02

three-layer 99.92 0.06 0.02
four-layer 99.94 0.04 0.02
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Figure 2. Optical, photothermal conversion, and water transport properties of the bilayered wood-
PEDOT:PSS hydrogel evaporator. (a) Absorption spectra of nanofibrous PEDOT:PSS hydrogels.
(b,c) Temperature variation (b) and maximum steady-state temperature (c) of wood and different
wood-PEDOT:PSS hydrogel evaporators under 1 sun irradiation for one hour. (d) Infrared imaging
of the surface temperature distribution of wood and wood-PEDOT:PSS hydrogel evaporator at 0,
10, 30, and 60 min solar irradiation. (e) SEM images of the wood-PEDOT:PSS evaporators with
different nanofibrous PEDOT:PSS layers. (f) The contact angles of the wood-PEDOT:PSS hydrogel
evaporators with different nanofibrous PEDOT:PSS hydrogel layers. Inset: photographs of the contact
angle. (g) Water wettability of the bilayered wood-PEDOT:PSS hydrogel evaporator in Rhodamine B
(RhB) solution.
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The water transport characteristics of evaporators played a crucial role in facilitating
efficient interfacial evaporation, primarily relying on their physical structure encompassing
porous channels and capillary transport, as well as the chemical structure governing
the dynamic transfer and evaporation of hydrophobic water molecules. Natural wood
possesses a porous structure and corresponding hydrophilic groups, which serve as a solid
foundation for rapid water transport and the diffusion of water molecules. We evaluated
the surface morphology of nanofibrous PEDOT:PSS hydrogels deposited on different layers
of wood surfaces by SEM. The results revealed that natural wood exhibited a large and
uniformly distributed vertically interconnected porous structure. Furthermore, it was
observed that the deposition of the nanofibrous PEDOT:PSS hydrogel induced significant
alterations in the morphologies and sizes of the pores and channels of the wood. With the
increasing number of PEDOT:PSS hydrogel layers, the microstructure on the wood surface
was nearly entirely covered (Figures 2e and S5), resulting in the formation of a PEDOT:PSS
hydrogel film with a certain thickness on top of the wood. Additionally, the combination
of the PEDOT:PSS hydrogel film’s swelling ability and the capillary action of the wood
contributed to the rapid transport of water and steam generation. As illustrated in Figure 2g,
we placed a dry paper soaked in an organic dye solution on the surface of the bilayered
solar evaporator and carefully observed the gradual wetting behavior of the paper. The
experimental results clearly demonstrated that within a short duration of 90 s, the paper
became nearly completely saturated, indicating the rapid water transport characteristics of
the bilayered wood-PEDOT:PSS hydrogel solar evaporator and its capability to replenish
water promptly to the evaporation surface. As the number of PEDOT:PSS hydrogel layers
on the wood surface increased from one to four, we conducted contact angle tests on the
surface of the bilayered wood-PEDOT:PSS hydrogel interfacial solar evaporator, observing
an increase in the contact angle from 40.5◦ to 62.1◦ (Figure 2f). This further substantiated
that the deposition of PEDOT:PSS had a certain impact on the water transport rate in the
wood; however, it did not cause a complete loss of water transport capability on the wood
surface. During this stage, the water transport mechanism shifted from capillary action
on the wood surface to rapid diffusion within the hydrogel layer, thus achieving highly
efficient solar steam generation.

3.3. Steam Generation Performances of the Wood-PEDOT:PSS Hydrogel Interfacial Evaporator

In this research, a comprehensive quantification of the overall evaporation perfor-
mance of the wood-PEDOT:PSS hydrogel evaporator was carried out, directly and system-
atically evaluating its evaporation rate and energy efficiency. The evaporation performance
of the wood-PEDOT:PSS evaporator was assessed using the experimental evaporation test
system, as depicted in Figure S7. The evaluation involved monitoring the mass change of
water under 1 sun solar irradiation for 60 min. The results demonstrated that in the wood-
PEDOT:PSS hydrogel evaporator with varying PEDOT:PSS layer numbers, the change in
water mass exhibited a linear increase with increasing irradiation time (Figure 3b). Addi-
tionally, as the number of PEDOT:PSS layers increased from zero to four, the evaporation
rate progressively rose, measuring at 0.74, 0.9, 1.15, 1.22, and 1.74 kg m−2 h−1. As illus-
trated in Figure 3c, the deposition of four layers of PEDOT:PSS hydrogel on the wood
surface yielded the highest evaporation rate. Furthermore, scanning electron microscopy
(SEM) was employed to characterize the surface structure of the evaporator following the
evaporation process. As depicted in Figure S6, the results indicated no significant alter-
ation in the surface structure, affirming the evaporator’s capability to maintain structural
stability even under rigorous conditions of intense light irradiation and water immersion.
The achievement of a high evaporation rate relied not only on the wood-PEDOT:PSS hy-
drogel evaporator’s rapid water transport, efficient water molecule diffusion, and effective
photothermal conversion capabilities but also on the inherent energy requirements during
the water evaporation process. The relatively low evaporative enthalpy of the hydrogel
facilitated and promoted the water evaporation process. The equivalent evaporation en-
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thalpy of water in the nanofibrous PEDOT:PSS hydrogel (∆Hvap) is illustrated in Figure 3d
and can be estimated by evaporating water with the same input power (Uin),

Uin = ∆Hvapm0 = ∆Hequmg (2)
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mass change of water (e) and water evaporation rate (f) for four-layer nanofibrous PEDOT:PSS
hydrogel under different solar irradiation intensities (0.5, 1.0, 1.5, and 2.0 sun).

In the equation, ∆Hvap represents the evaporation enthalpy of bulk water, m0 denotes
the mass change of bulk water (under dark conditions), and mg represents the mass change
of different layers of PEDOT:PSS hydrogel coating of the evaporator during 1 h under dark
conditions. As shown in Figure S7, the mass change tests conducted under dark conditions
on bulk water bilayered wood-based evaporators with various PEDOT:PSS hydrogel coat-
ings (from zero to four layers) revealed distinct values for the evaporation rates, namely,
0.081, 0.094, 0.1, 0.102, 0.104, and 0.106 kg m−2 h−1. The corresponding calculated values
for the effective evaporation enthalpies were determined as 2450, 2115, 1979.6, 1933.2,
1903.5, and 1860.5 J g−1, respectively. These results demonstrated a significant reduction in
the effective evaporation enthalpy of water within the nanofibrous PEDOT:PSS hydrogel
compared to bulk water. Notably, the evaporator coated with four layers of PEDOT:PSS
hydrogel exhibited a prominently decreased effective evaporation enthalpy, achieving an
impressive low value of 1860.5 J g−1.

Energy efficiency (η) is calculated based on the corresponding Eequ of the hydrogel,
and in this case, (η) can be calculated using the following equation [39]:

η =
mEequ

CoptP0
(3)

Where m represents the mass flux at steady-state conditions, Eequ is the equivalent
evaporative enthalpy of water in the hydrogel, P0 is the solar irradiation power of standard
solar radiation (1 kW m−2), and Copt refers to the light concentration on the absorber surface.
By optimizing the number of layers of PEDOT:PSS hydrogel (ranging from zero to four
layers), the wood-PEDOT:PSS hydrogel evaporator achieved a substantial enhancement in
energy efficiency under solar irradiation, increasing from ~43.73% to ~75.76% (Figure 3b).
This notable evaporation performance surpassed the majority of conventional deposit
light absorbers on wood surfaces (Table 2), and certain other classes of materials were
favored, including carbon-based materials [17,31,32,34,36] plasmonic nanoparticles [40],
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and inorganic semiconductor-based materials [41], among others. The solar irradiance
intensity had a significant impact on the evaporative performance of the hydrogel. As the
solar irradiance intensity increased from a standard cloudy day illumination of 0.5 sun
to a simulated concentrate sunlight condition of 2.0 sun, the curve depicting the mass
change of water evaporated from the nanofibrous PEDOT:PSS hydrogel over time showed
noticeable variations (Figure 3e). The evaporation rates also increased with the increasing
light intensity, reaching 0.85, 1.47, 2.25, and 2.93 kg m−2 h−1, respectively (Figure 3f).
This observation indicated that the increase in light intensity significantly promoted the
evaporation process, thereby achieving higher evaporation rates and efficiency.

Table 2. Performance comparison of wood-PEDOT:PSS hydrogel with current wood-based and other
photothermal conversion materials.

Materials Light Absorption (%) Evaporation Rate (kg m−2 h−1) Energy Efficiency (%) References

Wood-PDA 90 1.38 87 [19]
Drilling holes 98 1.04 75.1 [32]

Plasmonic wood 99 1.0 68 [25]
Carbonized wood 99 1.3 57.3 [31]

C-L wood 96 1.08 74 [18]
CNT-coated tree 95 1.0 67.8 [42]

graphite coated wood 95 1.2 80 [36]
CuFeSe2 (NPs) decorated wood 99 1.3 67.7 [37]
carbonized bimodal evaporator 97 0.8 57 [33]

poplar-TA-Fe3+ 98 1.34 90 [43]
Wood/Fe2O3/CNT 97 1.42 87.2 [44]

F wood/CNTs 98 0.83 65 [34]
PNPG wood 90 1.64 90.4 [35]
NP-Cu film / 1.47 92.9 [45]

PG-10 95 1.42 96.6 [46]
TiN NPs / 1.34 84.5 [47]

WTe2 nanosheet / 1.09 74.8 [41]
Wood-PEDOT:PSS hydrogel 99.9 1.47 75.76 This work

3.4. Applications in Sewage Purification of the Wood-PEDOT:PSS Hydrogel Interfacial Evaporator

As illustrated in Figure 4a, the distinct colored areas correspond to data values of
various wood-based evaporators regarding light absorption, evaporation rate, and energy
efficiency. The results are depicted that our developed wood-PEDOT:PSS hydrogel evapora-
tor surpassed most of the previously reported advanced wood-based interfacial evaporators.
The comparative analysis presented in Table 2 further substantiates its superior perfor-
mance, outshining the majority of wood-based evaporators. These compelling findings
position wood-PEDOT:PSS hydrogel as a leading contender for efficient and practical
solar-driven water purification applications. Building upon the exemplary evaporation per-
formance exhibited by the bilayered wood-PEDOT:PSS hydrogel evaporator as described
above, it is imperative to investigate the long-term stability and durability of its perfor-
mance. To evaluate the long-term stability of the wood-PEDOT:PSS hydrogel evaporator in
a real-world environment, we conducted continuous monitoring of the evaporation mass
change, evaporation rate, and corresponding energy efficiency for a duration of 10 days
under 1 sun. During the experimental period, the wood-PEDOT:PSS hydrogel evaporator
was immersed in simulated 3.5 wt.% seawater at night and exposed to natural sunlight.
Astonishingly, after the 10-day testing period, the evaporation rate was determined to be
~1.358 kg m−2 h−1, exhibiting a marginal decrease of ~0.11 kg m−2 h−1 compared with
the initial value of ~1.47 kg m−2 h−1. At the same time, the wood-PEDOT:PSS hydrogel
evaporator also displayed consistent mass changes (Figure S8) and achieved a high av-
erage evaporation rate (~1.36 kg m−2 h−1) along with a corresponding average energy
efficiency (~70.32%) (Figure 4b). These findings affirmed the outstanding reliability of the
wood-PEDOT:PSS hydrogel evaporator, its enduring resilience to solar radiation, and its
capacity for prolonged immersion in metal salt ion solutions.
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Figure 4. The stability and purification effect of the wood-PEDOT:PSS hydrogel evaporator.
(a) Comparative performance of the wood-PEDOT:PSS hydrogel compared with other wood-based
materials [18,19,25,31–37,42–44]. (b) Evaporation rates and corresponding energy efficiencies for
four layers of wood-PEDOT:PSS hydrogel tested continuously for 10 days under one solar irra-
diation in a simulated seawater evaporation environment. (c,d) Metal ion concentrations (c) and
corresponding ion removal rates (d) in different seawater samples before and after desalination.
(e,f) Typical metal cation concentrations (e) and corresponding ion removal rates (f) in sewage before
and after desalination.

The solar water purification capabilities of the bilayered wood-PEDOT:PSS hydrogel
evaporator were investigated through its direct application in the desalination of natural
seawater and treatment of simulated sewage. In order to evaluate the purification process of
simulated seawater (3.5 wt.%) by the wood-PEDOT:PSS hydrogel evaporator, we employed
ICP-MS to analyze the concentrations of major metal ions (e.g., Na+, Mg2+, K+, and Ca2+)
in the seawater before and after purification. The outcomes revealed a significant reduction
in the concentrations of the four major metal ions by approximately two to three orders of
magnitude after purification using a wood-PEDOT:PSS hydrogel evaporator (Figure 4c).
Additionally, each ion exhibited a removal rate exceeding 99.99% (Figure 4d), indicating the
high efficiency and superiority desalination capabilities of the wood-PEDOT:PSS hydrogel
evaporator. Concurrently, the accumulation of heavy metal ions in the human body can
lead to enzyme and protein inactivation, thereby initiating chronic toxicity. By utilizing
the wood-PEDOT:PSS hydrogel evaporator, we effectively eliminated heavy metal ions
(e.g., Cu2+, Zn2+, Pb2+, and Ni2+) from the simulated sewage. The analysis of the purified
water revealed a substantial reduction of heavy metal cation concentrations by four to
six orders of magnitude before and after purification (Figure 4e), with a removal rate of
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heavy metal ions exceeding 99% (Figure 4f). As a result, the obtained results conclusively
established the outstanding effectiveness of the wood-PEDOT:PSS hydrogel evaporator in
addressing heavy metal pollution in wastewater.

4. Conclusions

This study used a simple and efficient method to develop a bilayered wood-based
interfacial evaporator covered with nanofibrous PEDOT:PSS hydrogel for solar-driven
sewage purification and desalination. PEDOT:PSS served as the light-to-heat conversion
layer, enabling excellent broadband light absorption and efficient photothermal conversion.
The wood acted as the water transport and thermal insulation layer, facilitating rapid
water replenishment during the evaporation process and minimizing energy loss. The
synergistic benefits of these features resulted in the bilayered wood-PEDOT:PSS hydrogel
evaporator achieving high light absorption of ~99.9% and an impressive evaporation rate
of ~1.47 kg m−2 h−1, with an energy conversion efficiency of ~75.76%. Moreover, even after
prolonged exposure to sunlight and during saltwater evaporation experiments, the wood-
PEDOT:PSS hydrogel evaporator exhibited superior evaporation performance compared
with most reported wood-based interfacial evaporators. Additionally, it demonstrated
remarkable durability and long-lasting salt rejection capabilities, achieving an impressive
99.9% efficiency in removing heavy metal ions from sewage. In conclusion, the design
and fabrication method demonstrated in this research offer a new and promising strategy
for environmentally friendly and cost-effective solar-driven interfacial evaporation and
seawater desalination technologies, holding great potential to alleviate and address global
water resource scarcity and environmental pollution challenges.
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