Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls
Abstract
1. Introduction
2. Mathematical Analysis
3. Numerical Solution
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahmoudi, A.H.; Shahi, M.; Shahedin, A.M.; Hemati, N. Numerical modeling of natural convection in an open cavity with two vertical thin heat sources subjected to a nanofluid. Int. Commun. Heat Mass Transf. 2011, 38, 110–118. [Google Scholar] [CrossRef]
- Cho, C.C.; Chen, C.L.; Chen, C.K. Natural convection heat transfer performance in complex-wavy-wall enclosed cavity filled with nanofluid. Int. J. Therm. Sci. 2012, 60, 255–263. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Chamkha, A.J. Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall. Int. Commun. Heat Mass Transf. 2014, 57, 36–47. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Oztop, H.F.; Pop, I.; Al-Salem, K. MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater. Int. J. Heat Mass Transf. 2016, 103, 955–964. [Google Scholar] [CrossRef]
- Mondal, P.; Mahapatra, T.R. MHD double-diffusive mixed convection and entropy generation of nanofluid in a trapezoidal cavity. Int. J. Mech. Sci. 2021, 15, 208. [Google Scholar] [CrossRef]
- Reddy, P.S.; Sreedevi, P. Buongiorno’s model nanofluid natural convection inside a square cavity with thermal radiation. Chin. J. Phys. 2021, 72, 327–344. [Google Scholar] [CrossRef]
- Xue, W.; Wang, Y.; Chen, Z.; Liu, H. An integrated model with stable numerical methods for fractured underground gas storage. J. Clean. Prod. 2023, 393, 136268. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, H.; Fang, B.; Zakin, J.; Yu, B. Heat transfer enhancement for drag-reducing surfactant fluid using photo-rheological counterion. Exp. Heat Transf. 2012, 25, 139–150. [Google Scholar] [CrossRef]
- Qi, Y.; Weavers, L.K.; Zakin, J.L. Enhancing heat-transfer ability of drag reducing surfactant solutions with ultrasonic energy. J. Non-Newton. Fluid Mech. 2003, 116, 71–93. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Cheng, Z. Direct numerical simulation of gas-liquid drag-reducing cavity flow by the VOSET method. Polymers 2019, 11, 596. [Google Scholar] [CrossRef]
- Ge, W.; Zhang, Y.; Zakin, J.L. Surfactant turbulent drag reduction in an enclosed rotating disk apparatus. Exp. Fluids 2007, 42, 459–469. [Google Scholar] [CrossRef]
- Chen, K.T.; Tsai, C.C.; Luo, W.J.; Lu, C.W.; Chen, C.H. Aspect ratio effect on multiple flow solutions in a two-sided parallel motion lid-driven cavity. J. Mech. 2015, 31, 153–160. [Google Scholar] [CrossRef][Green Version]
- Luo, W.J.; Yang, R.J. Multiple fluid flow and heat transfer solutions in a two-sided lid-driven cavity. Int. J. Heat Mass Transf. 2007, 50, 2394–2405. [Google Scholar] [CrossRef]
- Mehryan, S.A.M.; Kashkooli, F.M.; Ghalambaz, M.; Chamkha, A.J. Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Adv. Powder Technol. 2017, 28, 2295–2305. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Hashim, I.; Hajjar, A.; Pour, M.S. Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks. Energies 2020, 13, 2942. [Google Scholar] [CrossRef]
- Tayebi, T.; Chamkha, A.J. Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 1115–1136. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khan, W.A.; Hamid, M.; Liu, H. Finite element analysis of hybrid nanofluid flow and heat transfer in a split lid-driven square cavity with Y-shaped obstacle. Phys. Fluids 2020, 32, 093609. [Google Scholar] [CrossRef]
- Belhaj, S.; Ben-Beya, B. Thermal performance analysis of hybrid nanofluid natural convection in a square cavity containing an elliptical obstacle under variable magnetic field. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 1825–1860. [Google Scholar] [CrossRef]
- Rajesh, V.; Chamkha, A.J.; Sridevi, C.; Al-Mudhaf, A.F. A numerical investigation of transient MHD free convective flow of a nanofluid over a moving semi-infinite vertical cylinder. Eng. Comput. 2017, 34, 1393–1412. [Google Scholar] [CrossRef]
- Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Rajesh, V.; Sheremet, M.A.; Öztop, H.F. Impact of hybrid nanofluids on MHD flow and heat transfer near a vertical plate with ramped wall temperature. Case Stud. Therm. Eng. 2021, 28, 101557. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Adamu, I.M.; Jamil, M.M.; Kefayati, G.H.R.; Mamat, R.; Najafi, G. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. Int. Commun. Heat Mass Transf. 2016, 78, 68–79. [Google Scholar] [CrossRef]
- Dhinesh Kumar, D.; Valan Arasu, A. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew. Sustain. Energy Rev. 2018, 81, 1669–1689. [Google Scholar] [CrossRef]
- Vemula, R.; Chamkha, A.; Mallesh, M.P. Nanofluid flow past an impulsively started vertical plate with variable surface temperature. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 328–347. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Groşan, T.; Pop, I. Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno’s model. J. Heat Transf. 2014, 136, 082501. [Google Scholar] [CrossRef]
- Sahoo, R.R. Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder Technol. 2020, 370, 19–28. [Google Scholar] [CrossRef]
- Zahan, I.; Nasrin, R.; Khatun, S. Thermal performance of ternary-hybrid nanofluids through a convergent-divergent nozzle using distilled water–ethylene glycol mixtures. Int. Commun. Heat Mass Transf. 2022, 137, 106254. [Google Scholar] [CrossRef]
- Shao, Y.; Nayak, M.K.; Dogonchi, A.S.; Chamkha, A.J.; Elmasry, Y.; Galal, A.M. Ternary hybrid nanofluid natural convection within a porous prismatic enclosure with two movable hot baffles: An approach to effective cooling. Case Stud. Therm. Eng. 2022, 40, 102507. [Google Scholar] [CrossRef]
- Sneha, K.N.; Vanitha, G.P.; Mahabaleshwar, U.S.; Laroze, D. Effect of couple stress and mass transpiration on ternary hybrid nanoliquid over a stretching/shrinking sheet with heat transfer. Micromachines 2022, 13, 1694. [Google Scholar] [CrossRef]
- Hafeez, M.B.; Krawczuk, M.; Nisar, K.S.; Jamshed, W.; Pasha, A.A. A finite element analysis of thermal energy inclination based on ternary hybrid nanoparticles influenced by induced magnetic field. Int. Commun. Heat Mass Transf. 2022, 135, 106074. [Google Scholar] [CrossRef]
- Adnan; Ashraf, W. Thermal efficiency in hybrid (Al2O3-CuO/H2O) and ternary hybrid nanofluids (Al2O3-CuO-Cu/H2O) by considering the novel effects of imposed magnetic field and convective heat condition. Waves Random Complex Media 2022. [Google Scholar] [CrossRef]
- Al Oweidi, K.F.; Shahzad, F.; Jamshed, W.; Usman; Ibrahim, R.W.; El Din, E.S.M.T. Partial differential equations of entropy analysis on ternary hybridity nanofluid flow model via rotating disk with hall current and electromagnetic radiative influences. Sci. Rep. 2022, 12, 20692. [Google Scholar] [CrossRef] [PubMed]
- Puneeth, V.; Anandika, R.; Manjunatha, S.; Ijaz Khan, M.; Imran Khan, M.; Althobaiti, A. Implementation of modified Buongiorno’s model for the investigation of chemically reacting rGO-Fe3O4-TiO2-H2O ternary nanofluid jet flow in the presence of bio-active mixers. Chem. Phys. Lett. 2022, 786, 139194. [Google Scholar] [CrossRef]
- Mahmood, Z.; Khan, U. Unsteady three-dimensional nodal stagnation point flow of polymer-based ternary-hybrid nanofluid past a stretching surface with suction and heat source. Sci. Prog. 2023, 106, 003685042311527. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Unsteady convection flow of some nanofluids past a moving vertical flat plate with heat transfer. J. Heat Transf. 2014, 136, 031704. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- De Vahl Davis, G. Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 1983, 3, 249–264. [Google Scholar] [CrossRef]
- Sathiyamoorthy, M.; Chamkha, A.J. Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int. J. Numer. Methods Heat Fluid Flow 2012, 22, 677–698. [Google Scholar] [CrossRef]
Property | Ternary Nanosuspension (Cu–CuO–Al2O3/H2O) |
---|---|
Density (ρ) | |
Dynamic viscosity (μ) | |
Heat capacity (ρcp) | |
Thermal expansion coefficient (ρβ) | |
Thermal conductivity (κ) | , where and |
Properties | H2O (f) | CuO (s1) | Cu (s2) | Al2O3 (s3) |
---|---|---|---|---|
ρ (kg/m3) | 997.1 | 6320 | 8933 | 3970 |
cp (J/kgK) | 4179 | 531.8 | 385 | 765 |
β (1/K) | 21 × 10–5 | 1.8 × 10–5 | 1.67 × 10–5 | 0.85 × 10–5 |
κ (W/mK) | 0.613 | 76.5 | 401 | 40 |
(a) | ||||
Elements Number | Nodes Number | NuL | NuB | |
Extremely Coarse | 192 | 145 | 1.2465 | 1.5958 |
Extra Coarse | 354 | 250 | 1.24678 | 1.59534 |
Coarser | 540 | 361 | 1.24632 | 1.59534 |
Coarse | 1012 | 645 | 1.24626 | 1.5953 |
Normal | 1510 | 930 | 1.24636 | 1.59518 |
Fine | 2516 | 1475 | 1.24628 | 1.59514 |
Finer | 6536 | 3731 | 1.24594 | 1.59548 |
Extra fine | 16,946 | 9374 | 1.2458 | 1.59564 |
Extremely fine | 26,352 | 14,077 | 1.24578 | 1.59566 |
(b) | ||||
Elements Number | Nodes Number | NuL | NuB | |
Extremely Coarse | 192 | 145 | 2.3938 | 2.707 |
Extra Coarse | 354 | 250 | 2.7683 | 3.0627 |
Coarser | 540 | 361 | 2.9665 | 3.2585 |
Coarse | 1012 | 645 | 3.3523 | 3.6427 |
Normal | 1510 | 930 | 3.5601 | 3.8578 |
Fine | 2516 | 1475 | 3.7483 | 4.048 |
Finer | 6536 | 3731 | 4.4309 | 4.731 |
Extra fine | 16,946 | 9374 | 5.0301 | 5.3296 |
Extremely fine | 26,352 | 14,077 | 5.0311 | 5.3294 |
Grid Information | Grid Statistics |
---|---|
Number of elements | |
Quads | 1200 |
Edge elements | 600 |
Triangles | 15,746 |
Average element quality | 0.8028 |
Number of Nodes | 9374 |
Vertex elements | 4 |
CuO–Al2O3/Water | Cu–Al2O3/Water | Cu–CuO/Water | ||||
---|---|---|---|---|---|---|
Ra | NuL | NuB | NuL | NuB | NuL | NuB |
103 | 1.0689 | 1.46628 | 1.07054 | 1.47114 | 1.07014 | 1.47836 |
104 | 0.24 | 3.3962 | 0.23986 | 3.4116 | 0.23772 | 3.4418 |
105 | 0.46208 | 6.8034 | 0.4619 | 6.818 | 0.46546 | 6.8516 |
CuO–Al2O3/Water | Cu–Al2O3/Water | Cu–CuO/Water | ||||
---|---|---|---|---|---|---|
Ra | NuL | NuB | NuL | NuB | NuL | NuB |
103 | 4.4442 | 4.7838 | 4.4544 | 4.7968 | 4.463 | 4.8119 |
104 | 4.371 | 6.2361 | 4.3833 | 6.2559 | 4.3984 | 6.2847 |
105 | 5.4299 | 8.612 | 5.4429 | 8.6425 | 5.4635 | 8.6863 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajesh, V.; Sheremet, M. Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls. Nanomaterials 2023, 13, 2860. https://doi.org/10.3390/nano13212860
Rajesh V, Sheremet M. Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls. Nanomaterials. 2023; 13(21):2860. https://doi.org/10.3390/nano13212860
Chicago/Turabian StyleRajesh, Vemula, and Mikhail Sheremet. 2023. "Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls" Nanomaterials 13, no. 21: 2860. https://doi.org/10.3390/nano13212860
APA StyleRajesh, V., & Sheremet, M. (2023). Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls. Nanomaterials, 13(21), 2860. https://doi.org/10.3390/nano13212860