The Use of H2 in Catalytic Bromate Reduction by Nanoscale Heterogeneous Catalysts
Abstract
:1. Introduction
2. Reaction Mechanism of Catalytic BrO3− Removal
3. Nanoscale Heterogeneous Catalysts for BrO3− Reduction
3.1. Direct Bromate Reduction by Nanoscale Heterogeneous Catalysts without H2
3.2. Catalytic Bromate Reduction by Nanoscale Heterogeneous Catalysts with H2
3.3. Catalytic Bromate Reduction by Nanoscale Heterogeneous Catalysts with Solid-State H2
4. An Economic Evaluation of Catalytic BrO3− Reduction
5. Concluding Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; ISBN 9789241548151. [Google Scholar]
- Huber, M.M.; Canonica, S.; Park, G.Y.; von Gunten, U. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environ. Sci. Technol. 2003, 37, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.; Godley, A.; Lytton, L.; Cartmell, E. Bromate Environmental Contamination: Review of Impact and Possible Treatment. Crit. Rev. Environ. Sci. Technol. 2005, 35, 193–217. [Google Scholar] [CrossRef]
- Fang, J.Y.; Shang, C. Bromate Formation from Bromide Oxidation by the UV/Persulfate Process. Environ. Sci. Technol. 2012, 46, 8976–8983. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Villanova, R.J.; Leite, O.D.M.V.; Hierro, H.J.M.; de Castro Alfageme, S.; Hernández, G.C. Occurrence of Bromate, Chlorite and Chlorate in Drinking Waters Disinfected with Hypochlorite Reagents. Tracing Their Origins. Sci. Total Environ. 2010, 408, 2616–2620. [Google Scholar] [CrossRef] [PubMed]
- Cerrillo, J.L.; Palomares, A.E. A Review on the Catalytic Hydrogenation of Bromate in Water Phase. Catalysts 2021, 11, 365. [Google Scholar] [CrossRef]
- Li, B.C.; Yang, H.; Kwon, E.; Tuan, D.D.; Khiem, C.T.; Lisak, G.; Thanh, X.B.; Ghanbari, F.; Lin, K.Y.A. Catalytic Reduction of Bromate by Co-Embedded N-Doped Carbon as a Magnetic Non-Noble Metal Hydrogenation Catalyst. Sep. Purif. Technol. 2021, 277, 119320. [Google Scholar] [CrossRef]
- Restivo, J.; Soares, O.S.G.P.; Órfão, J.J.M.; Pereira, M.F.R. Bimetallic Activated Carbon Supported Catalysts for the Hydrogen Reduction of Bromate in Water. Catal. Today 2015, 249, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Abohamzeh, E.; Salehi, F.; Sheikholeslami, M.; Abbassi, R.; Khan, F. Review of Hydrogen Safety during Storage, Transmission, and Applications Processes. J. Loss Prev. Process Ind. 2021, 72, 104569. [Google Scholar] [CrossRef]
- Hurley, K.D.; Shapley, J.R. Efficient Heterogeneous Catalytic Reduction of Perchlorate in Water. Environ. Sci. Technol. 2007, 41, 2044–2049. [Google Scholar] [CrossRef]
- Nurlan, N.; Akmanova, A.; Hamid, S.; Lee, W. Competitive Inhibition of Catalytic Nitrate Reduction over Cu–Pd-Hematite by Groundwater Oxyanions. Chemosphere 2022, 290, 133331. [Google Scholar] [CrossRef]
- Hamid, S.; Abudanash, D.; Han, S.; Kim, J.R.; Lee, W. Strategies to Enhance the Stability of Nanoscale Zero-Valent Iron (NZVI) in Continuous BrO3− Reduction. J. Environ. Manag. 2019, 231, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Tuan, D.D.; Yang, H.; Huy, N.N.; Kwon, E.; Khiem, T.C.; You, S.; Lee, J.; Lin, K.Y.A. Enhanced Reduction of Bromate in Water by 2-Dimensional Porous Co3O4 via Catalytic Hydrogenation. J. Environ. Chem. Eng. 2021, 9, 105809. [Google Scholar] [CrossRef]
- Chiu, Y.T.; Wang, H.; Lee, J.; Lin, K.Y.A. Reductive and Adsorptive Elimination of Bromate from Water Using Ru/C, Pt/C and Pd/C in the Absence of H2: A Comparative Study. Process Saf. Environ. Prot. 2019, 127, 36–44. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Q.; Xu, D.; Zhong, Y.; Luo, K.; Li, X.; Chen, H.; Zeng, G. Simultaneous Adsorption/Reduction of Bromate by Nanoscale Zerovalent Iron Supported on Modified Activated Carbon. Ind. Eng. Chem. Res. 2013, 52, 12574–12581. [Google Scholar] [CrossRef]
- Lem, O.; Yoon, S.; Bae, S.; Lee, W. The Enhanced Reduction of Bromate by Highly Reactive and Dispersive Green Nano-Zerovalent Iron (G-NZVI) Synthesized with Onion Peel Extract. RSC Adv. 2021, 11, 5008–5018. [Google Scholar] [CrossRef]
- Marco, Y.; García-Bordejé, E.; Franch, C.; Palomares, A.E.; Yuranova, T.; Kiwi-Minsker, L. Bromate Catalytic Reduction in Continuous Mode Using Metal Catalysts Supported on Monoliths Coated with Carbon Nanofibers. Chem. Eng. J. 2013, 230, 605–611. [Google Scholar] [CrossRef]
- Restivo, J.; Soares, O.S.G.P.; Órfão, J.J.M.; Pereira, M.F.R. Metal Assessment for the Catalytic Reduction of Bromate in Water under Hydrogen. Chem. Eng. J. 2015, 263, 119–126. [Google Scholar] [CrossRef]
- Soares, O.S.G.P.; Freitas, C.M.A.S.; Fonseca, A.M.; Órfão, J.J.M.; Pereira, M.F.R.; Neves, I.C. Bromate Reduction in Water Promoted by Metal Catalysts Prepared over Faujasite Zeolite. Chem. Eng. J. 2016, 291, 199–205. [Google Scholar] [CrossRef]
- Zhang, P.; Jiang, F.; Chen, H. Enhanced Catalytic Hydrogenation of Aqueous Bromate over Pd/Mesoporous Carbon Nitride. Chem. Eng. J. 2013, 234, 195–202. [Google Scholar] [CrossRef]
- Freitas, C.M.A.S.; Soares, O.S.G.P.; Órfão, J.J.M.; Fonseca, A.M.; Pereira, M.F.R.; Neves, I.C. Highly Efficient Reduction of Bromate to Bromide over Mono and Bimetallic ZSM5 Catalysts. Green Chem. 2015, 17, 4247–4254. [Google Scholar] [CrossRef]
- Nurlan, N.; Akmanova, A.; Han, S.; Lee, W. Enhanced Reduction of Aqueous Bromate by Catalytic Hydrogenation Using the Ni-Based Metal-Organic Framework Ni(4,4′-Bipy)(1,3,5-BTC) with NaBH4. Chem. Eng. J. 2021, 414, 128860. [Google Scholar] [CrossRef]
- Lin, K.Y.A.; Chen, S.Y. Catalytic Reduction of Bromate Using ZIF-Derived Nanoscale Cobalt/Carbon Cages in the Presence of Sodium Borohydride. ACS Sustain. Chem. Eng. 2015, 3, 3096–3103. [Google Scholar] [CrossRef]
- Lin, K.Y.A.; Chen, S.Y. Bromate Reduction in Water by Catalytic Hydrogenation Using Metal-Organic Frameworks and Sodium Borohydride. RSC Adv. 2015, 5, 43885–43896. [Google Scholar] [CrossRef]
- Han, D.; Zhao, Z.; Xu, Z.; Li, Y.; Zhang, P.; Guo, X. β-FeOOH-Coupled Activated Carbon Prepared by the High Temperature Impregnation Method for Bromate Removal from Water. J. Chem. Eng. Data 2018, 63, 2243–2251. [Google Scholar] [CrossRef]
- Soares, O.S.G.P.; Órfão, J.J.M.; Pereira, M.F.R. Activated Carbon Supported Metal Catalysts for Nitrate and Nitrite Reduction in Water. Catal. Lett. 2008, 126, 253–260. [Google Scholar] [CrossRef]
- Lin, K.Y.A.; Lin, C.H.; Lin, J.Y. Efficient Reductive Elimination of Bromate in Water Using Zero-Valent Zinc Prepared by Acid-Washing Treatments. J. Colloid Interface Sci. 2017, 504, 397–403. [Google Scholar] [CrossRef]
- Hua, D.; Hanxi, Y.; Xinping, A.; Chuansin, C. Hydrogen Production from Catalytic Hydrolysis of Sodium Borohydride Solution Using Nickel Boride Catalyst. Int. J. Hydrog. Energy 2003, 28, 1095–1100. [Google Scholar] [CrossRef]
- Muir, S.S.; Yao, X. Progress in Sodium Borohydride as a Hydrogen Storage Material: Development of Hydrolysis Catalysts and Reaction Systems. Int. J. Hydrog. Energy 2011, 36, 5983–5997. [Google Scholar] [CrossRef]
- Marrero-Alfonso, E.Y.; Gray, J.R.; Davis, T.A.; Matthews, M.A. Minimizing Water Utilization in Hydrolysis of Sodium Borohydride: The Role of Sodium Metaborate Hydrates. Int. J. Hydrog. Energy 2007, 32, 4723–4730. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen Production, Storage, Transportation and Key Challenges with Applications: A Review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Kurtz, J.; Sprik, S.; Bradley, T.H. Review of Transportation Hydrogen Infrastructure Performance and Reliability. Int. J. Hydrog. Energy 2019, 44, 12010–12023. [Google Scholar] [CrossRef]
- Hwang, H.T.; Varma, A. Hydrogen Storage for Fuel Cell Vehicles. Curr. Opin. Chem. Eng. 2014, 5, 42–48. [Google Scholar] [CrossRef]
- Li, G.; Kobayashi, H.; Taylor, J.M.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Toh, S.; Matsumura, S.; et al. Hydrogen Storage in Pd Nanocrystals Covered with a Metal-Organic Framework. Nat. Mater. 2014, 13, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Yanxing, Z.; Maoqiong, G.; Yuan, Z.; Xueqiang, D.; Jun, S. Thermodynamics Analysis of Hydrogen Storage Based on Compressed Gaseous Hydrogen, Liquid Hydrogen and Cryo-Compressed Hydrogen. Int. J. Hydrog. Energy 2019, 44, 16833–16840. [Google Scholar] [CrossRef]
- Qiu, S.; Chu, H.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L. Light Metal Borohydrides/Amides Combined Hydrogen Storage Systems: Composition, Structure and Properties. J. Mater. Chem. A 2017, 5, 25112–25130. [Google Scholar] [CrossRef]
- Schneemann, A.; White, J.L.; Kang, S.; Jeong, S.; Wan, L.F.; Cho, E.S.; Heo, T.W.; Prendergast, D.; Urban, J.J.; Wood, B.C.; et al. Nanostructured Metal Hydrides for Hydrogen Storage. Chem. Rev. 2018, 118, 10775–10839. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Bai, Y.; Zhang, C.; Song, Y.; Jiang, S.; Grouset, D.; Zhang, M. Review on the Research of Hydrogen Storage System Fast Refueling in Fuel Cell Vehicle. Int. J. Hydrog. Energy 2019, 44, 10677–10693. [Google Scholar] [CrossRef] [Green Version]
- Veziroglu, A.; MacArio, R. Fuel Cell Vehicles: State of the Art with Economic and Environmental Concerns. Int. J. Hydrog. Energy 2011, 36, 25–43. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Prospects and Impediments for Hydrogen and Fuel Cell Vehicles in the Transport Sector. Int. J. Hydrog. Energy 2021, 46, 10049–10058. [Google Scholar] [CrossRef]
- Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; Goddard, W.A.; Chen, S.; Ren, Z. High-Performance Bifunctional Porous Non-Noble Metal Phosphide Catalyst for Overall Water Splitting. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Kusada, K.; Yoshioka, S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Chen, Y.; Seo, O.; Kim, J.; Song, C.; et al. Efficient Overall Water Splitting in Acid with Anisotropic Metal Nanosheets. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Han, A.; Zhang, H.; Yuan, R.; Ji, H.; Du, P. Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Bartels, J.R.; Pate, M.B.; Olson, N.K. An Economic Survey of Hydrogen Production from Conventional and Alternative Energy Sources. Int. J. Hydrog. Energy 2010, 35, 8371–8384. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Özcan, H. Comprehensive Review on the Techno-Economics of Sustainable Large-Scale Clean Hydrogen Production. J. Clean. Prod. 2019, 220, 593–609. [Google Scholar] [CrossRef]
- Dincer, I.; Zamfirescu, C. Sustainable Hydrogen Production Options and the Role of IAHE. Int. J. Hydrog. Energy 2012, 37, 16266–16286. [Google Scholar] [CrossRef]
- Orhan, M.F.; Dincer, I.; Rosen, M.A.; Kanoglu, M. Integrated Hydrogen Production Options Based on Renewable and Nuclear Energy Sources. Renew. Sustain. Energy Rev. 2012, 16, 6059–6082. [Google Scholar] [CrossRef]
Catalyst | Bromate Concentration (mg·L−1) | Catalyst Dose (mg∙L−1) | Source of Hydrogen, Hydrogen Flow (mL (STP) min−1) | Reduction Efficiency (Time) | Bromide Generation (%) | Effective pH Range | References |
---|---|---|---|---|---|---|---|
Ru/C, Pt/C and Pd/C | 10 | 500 | No | 100% (120 min) | ~100 | 3–5 | [13] |
G-NZVI | 50 | 200 | No | 100% (2 min) | 100 | 7 | [16] |
NZVI/MAC | 0.2 | 5 | No | 100% (5 min) | 83.1 | 3–8 | [15] |
NZVI (Cu-Pd) | 25 | 50 | H2 gas, 40 | >99%, (11 h) | 100 | - | [12] |
Metal (Pd, Ru) CNF/monolith catalysts | 50 | 200 | H2 gas, 250 | ~70% (<25 min) | ~95 | - | [17] |
Pd, Rh, Ru and Pt supported on activated carbon | 10 | 400 | H2 gas, 100 | 100%, (<30 min) | 100 | - | [18] |
Pd/Cu-Y (metals over faujasite zeolite) | 10 | 150 | H2 gas, 50 | 100% (2 min) | ~100 | - | [19] |
Pd/mesoporous carbon nitride | 100 | 30 | H2 gas, 40 | 100% (50 min) | ~100 | 2–5.6 | [20] |
Mono and bimetallic (Cu-Pd) ZSM5 | 10 | 500 | H2 gas, 50 | 100% (10 min) | 100 | - | [21] |
Ni(4,4′-bipy)(1,3,5-BTC) | 25 | 500 | NaBH4 | 100% (15 min) | >95 | 3–7 | [22] |
ZIF-67 (carbonized) | 100 | 500 | NaBH4 | 100% (60 min) | 100 | 3–10 | [23] |
MIL-88A | 100 | 500 | NaBH4 | 100% (60 min) | 100 | 3–5 | [24] |
ZIF-67 | 100 | 500 | NaBH4 | 100% (60 min) | 100 | 3–5 | [24] |
Catalyst | Number of Cycles | Removal Efficiency | Metal Leaching | Reference |
---|---|---|---|---|
Ru/C, Pt/C and Pd/C | >70% after 5th cycle | 80% | - | [13] |
nZVI/MAC | - | 100% | No metal leaching | [15] |
NZVI (Cu-Pd) | 24 h continuous | >99% | Negligible amounts of leaching for Fe, Cu, Pd | [12] |
Metal (Pd, Ru) CNF/monolith catalysts | 10% loss, 7 h continuous | ~70% | No metal leaching | [17] |
Pd, Rh, Ru and Pt supported on activated carbon | 5 | 100% | - | [18] |
Pd/Cu-Y (metals over faujasite zeolite) | 2 | 100% | No metal leaching | [19] |
Pd/mesoporous carbon nitride | - | 100% | - | [20] |
Mono and bimetallic (Cu-Pd) ZSM5 | 3 | 100% | Cu, less than 1% of the initial amount; negligible | [21] |
(Ni(4,4′-bipy)(1,3,5-BTC) | 6 | 100% | Negligible, 0.002 µg⋅L−1 | [22] |
ZIF-67 (carbonized) | 4 | 100% | - | [23] |
MIL-88A | 5 (with minor loss) | 100% | No metal leaching | [24] |
ZIF-67 | 5 | 100% | No metal leaching | [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurlan, N.; Akmanova, A.; Lee, W. The Use of H2 in Catalytic Bromate Reduction by Nanoscale Heterogeneous Catalysts. Nanomaterials 2022, 12, 1212. https://doi.org/10.3390/nano12071212
Nurlan N, Akmanova A, Lee W. The Use of H2 in Catalytic Bromate Reduction by Nanoscale Heterogeneous Catalysts. Nanomaterials. 2022; 12(7):1212. https://doi.org/10.3390/nano12071212
Chicago/Turabian StyleNurlan, Nurbek, Ainash Akmanova, and Woojin Lee. 2022. "The Use of H2 in Catalytic Bromate Reduction by Nanoscale Heterogeneous Catalysts" Nanomaterials 12, no. 7: 1212. https://doi.org/10.3390/nano12071212