Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation
Abstract
:1. Introduction
2. Applications of Nanotechnology in the Cosmetics and Food Industries
2.1. Food and Cosmetics Packaging
2.1.1. Smart Packaging
Active and Intelligent Packaging
2.2. Nanocomposites Used in the Cosmetics and Food Industries
2.3. Carbon-Based NMs—Fullerenes
2.3.1. Graphene-Based NMs
2.3.2. Carbon Dots
2.3.3. Carbon Nanotubes
2.4. Nanoclays
2.5. Metallic NPs and Their Nanocomposites
2.5.1. Silver NPs
2.5.2. Titanium Dioxide NPs
2.5.3. Zinc Oxide NPs
2.6. Nanoencapsulation and Delivery Systems for Preservatives
2.6.1. Nanoemulsions
2.6.2. Nanoliposomes
2.6.3. Niosomes
2.6.4. Solid Lipid NPs and Nanostructured Lipid Carriers
2.6.5. Polymeric NPs
2.6.6. Nanofibers
2.7. Nanofluids
2.8. Nanomilling
2.9. Nanozymes
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowak, K.; Ratajczak-Wrona, W.; Górska, M.; Jabłońska, E. Parabens and their effects on the endocrine system. Mol. Cell Endocrinol. 2018, 474, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Plumridge, A.; Hesse, S.J.; Watson, A.J.; Lowe, K.C.; Stratford, M.; Archer, D.B. The weak acid preservative sorbic acid inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification. Appl. Environ. Microbiol. 2004, 70, 3506–3511. [Google Scholar] [CrossRef] [Green Version]
- Geis, P.A. Preservation Strategies in Cosmetic Microbiology: A practical Approach, 2nd ed.; Geis, P.A., Ed.; Taylor & Francis: New York, NY, USA, 2006; pp. 163–180. [Google Scholar]
- Siquet, F. Antibacterial agents and preservatives. In Handbook of Cosmetic Science and Technology; Paye, M., Barel, A.O., Maibach, H.I., Eds.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2009; pp. 223–231. [Google Scholar]
- Maillard, J.-Y. Mechanisms of bacterial resistance to microbicides. In Russell, Hugo & Ayliffe’s: Principles and Practice of Disinfection, Preservation and Sterilization; Fraise, A.P., Maillard, J.-Y., Sattar, S.A., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 108–120. [Google Scholar]
- Russell, A.D. Bacterial adaptation and resistance to antiseptics, disinfectants and preservatives is not a new phenomenon. J. Hosp. Infect. 2004, 57, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Morente, E.O.; Fernández-Fuentes, M.A.; Burgos, M.J.G.; Abriouel, H.; Pulido, R.P.; Gálvez, A. Biocide tolerance in bacteria. Int. J. Food Microbiol. 2013, 162, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.-C.; Jiang, X.; Wang, J.; Chen, C.; Liu, R.-S. Nano–bio effects: Interaction of nanomaterials with cells. Nanoscale 2013, 5, 3547. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, T.; Li, P.; Huang, W.; Tang, J.; Wang, P.; Chen, C. Use of Synchrotron Radiation-Analytical Techniques to Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS Nano 2015, 9, 6532–6547. [Google Scholar] [CrossRef] [PubMed]
- Pernodet, N.; Fang, X.H.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovich, M. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2006, 2, 766–773. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, V.; Cascione, M.; Toma, C.C.; Leporatti, S. Morphomechanical and organelle perturbation induced by silver nanoparticle exposure. J. Nanopart. Res. 2018, 20, 273. [Google Scholar] [CrossRef]
- Information Exchange on Cosmetic Packaging Materials along the Value Chain in the Context of the EU Cosmetics Regulation EC 1223/2009. Available online: file///C:/Users/Paraskevi.agg/Downloads/Packaging_Advisory_document_-_June_2019.pdf (accessed on 8 July 2021).
- Food Contact Materials—Regulation (EC) 1935/2004 (European Implementation Assessment). Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2016/581411/EPRS_STU(2016)581411_EN.pdf (accessed on 8 July 2021).
- Dobrucka, R.; Cierpiszewski, R. Active and Intelligent Packaging Food—Research and Development—A Review. Pol. J. Food Nutr. Sci. 2014, 64, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Gao, X.; Zhang, H.; Liu, H.; Jin, J.; Yang, W.; Xie, Y. Development and antilisterial activity of PE-based biological preservative films incorporating plantaricin BM-1. FEMS Microbiol. Lett. 2017, 364, fnw283. [Google Scholar] [CrossRef] [Green Version]
- La Storia, A.; Ercolini, D.; Marinello, F.; Mauriello, G. Characterization of bacteriocin-coated antimicrobial polyethylene films by atomic force microscopy. J. Food Sci. 2008, 73, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Meira, S.M.M.; Zehetmeyer, G.; Werner, J.O.; Brandelli, A. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll. 2017, 63, 561–570. [Google Scholar] [CrossRef]
- Cestari, L.A.; Gaiotto, R.C.; Antigo, J.L.; Scapim, M.R.S.; Madrona, G.S.; Yamashita, F.; Pozza, M.S.S.; Prado, I.N. Effect of active packaging on low-sodium restructured chicken steaks. J. Food Sci. Technol. 2015, 52, 3376–3382. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-F.; Rhim, J.-W. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films. Int. J. Biol. Macromol. 2015, 80, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.W.; Chikindas, M.L.; Yam, K.L. Inhibition of Saccharomyces cerevisiae by slow release of propyl paraben from a polymer coating. J. Food Prot. 2001, 64, 1420–1424. [Google Scholar] [CrossRef]
- Rodriguez, A.; Nerin, C.; Batlle, R. New cinnamon-based active paper packaging against Rhizopusstolonifer food spoilage. J. Agric. Food Chem. 2008, 56, 6364–6369. [Google Scholar] [CrossRef]
- Zema, L.; Sangalli, M.E.; Maroni, A.; Foppoli, A.; Bettero, A.; Gazzaniga, A. Active packaging for topical cosmetic/drug products: A hot-melt extruded preservative delivery device. Eur. J. Pharm. Biopharm. 2010, 75, 291–296. [Google Scholar] [CrossRef]
- Pradela-Filho, L.A.; Andreotti, I.A.A.; Carvalho, J.H.S.; Araújo, D.A.G.; Orzari, L.O.; Gatti, A.; Janegitz, B.C. Glass varnish-based carbon conductive ink: A new way to produce disposable electrochemical sensors. Sens. Actuators B Chem. 2020, 305, 127433. [Google Scholar] [CrossRef]
- Ye, Y.; Ji, J.; Sun, Z.; Shen, P.; Sun, X. Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff. TrAC Trends Anal. Chem. 2020, 122, 115718. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Lee, J.; Woo, S.M. The response of yeast vacuolar proteins: A novel rapid tool for Salmonella sp. screening. Biotechnol. Appl. Biochem. 2020, 68, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Kou, Y.; Jiang, X. Ultrasensitive determination of mercury ions using a glassy carbon electrode modified with nanocomposites consisting of conductive polymer and aminofunctionalized graphene quantum dots. Microchim. Acta. 2020, 187, 210. [Google Scholar] [CrossRef] [PubMed]
- Delfino, J.R.; da Silva, J.L.; Marques, A.L.B.; Stradiotto, N.R. Antioxidants detection in aviation biokerosene by high-performance liquid chromatography using gold nanoparticles anchored in reduced graphene oxide. Fuel 2020, 260, 116315. [Google Scholar] [CrossRef]
- Li, Q.; Ren, T.; Perkins, P.; Hu, X.; Wang, X. Applications of halloysite nanotubes in food packaging for improving film performance and food preservation. Food Control 2021, 124, 107876. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation. Int. J. Biol. Macromol. 2019, 121, 1329–1336 . [Google Scholar] [CrossRef] [PubMed]
- Arfat, Y.A.; Ahmed, J.; Ejaz, M.; Mullah, M. Polylactide/graphene oxide nanosheets/clove essential oil composite films for potential food packaging applications. Int. J. Biol. Macromol. 2018, 107, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Konwar, A.; Kalita, S.; Kotoky, J.; Chowdhury, D. Chitosan–Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm. ACS Appl. Mater. Interfaces 2016, 8, 20625–20634. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Biswal, B.K.; Kumari, D.; Bindra, P.; Kumar, S.; Stobdan, T.; Shanmugam, V. Ecofriendly Fruit Switches: Graphene Oxide-Based Wrapper for Programmed Fruit Preservative Delivery to Extend Shelf Life. ACS Appl. Mater. Interfaces 2018, 10, 18478–18488. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Krepker, M.; Shemesh, R.; Danin Poleg, Y.; Kashi, Y.; Vaxman, A.; Segal, E. Active food packaging films with synergistic antimicrobial activity. Food Control. 2017, 76, 117–126. [Google Scholar] [CrossRef]
- Fullerenol C 60. Available online: https://solarischem.com/cosmetics (accessed on 23 August 2021).
- Rondags, A.; Yuen, W.Y.; Jonkman, M.F.; Horváth, B. Fullerene C60 with cytoprotective and cytotoxic potential: Prospects as a novel treatment agent in Dermatology? Exp. Dermatol. 2017, 26, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lens, M. Recent progresses in application of fullerenes in cosmetics. Recent Pat. Biotechnol. 2011, 5, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Taira, H.; Aoshima, H.; Saitoh, Y.; Miwa, N. Clinical evaluation of fullerene- C60 dissolved in squalane for anti-wrinkle cosmetics. J. Nanosci. Nanotechnol. 2010, 10, 6769–6774. [Google Scholar] [CrossRef]
- Xiao, L.; Matsubayashi, K.; Miwa, N. Inhibitory effect of the watersoluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues. Arch. Dermatol. Res. 2007, 299, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Miwa, N.; Aoshima, H. Anti-Wrinkle Composition and External Skin Composition. 2009, WO113426. Available online: https://patents.google.com/patent/WO2014115137A1/en (accessed on 15 August 2021).
- Scientific Advice on the Safety of Nanomaterials in Cosmetics. Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs2016_q_060.pdf (accessed on 8 July 2021).
- Aoshima, H.; Kokubo, K.; Shirakawa, S.; Ito, M.; Yamana, S.; Oshima, T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol. Sci. 2009, 14, 69–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Chen, J.; Teng, L.; Wang, L.; Zhu, G.; Liu, S.; Luo, Z.; Shi, X.; Wang, Y.; Ren, L. The Antibacterial Applications of Graphene and Its Derivatives. Small 2016, 12, 4165–4184. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Hou, J.; Zhang, Y.; Liu, J.; Van der Bruggen, B. Graphene-based antimicrobial polymeric membranes: A review. J. Mater. Chem. A 2017, 5, 6776–6793. [Google Scholar] [CrossRef]
- Han, B.; Yu, M.; Pen, T.; Li, Y.; Hu, X.; Xiang, R.; He, G. One-step extraction of highly fluorescent carbon quantum dots by a physical method from carbon black. New J. Chem. 2017, 41, 5267–5270. [Google Scholar] [CrossRef]
- Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–2195. [Google Scholar] [CrossRef]
- Injac, R.; Prijatelj, M.; Strukelj, B. Fullerenol nanoparticles: Toxicity and antioxidant activity. Methods Mol. Biol. 2013, 1028, 75–100. [Google Scholar] [CrossRef]
- Zhou, Y.; Mintz, K.J.; Sharma, S.K.; Leblanc, R.M. Carbon Dots: Diverse Preparation, Application, and Perspective in Surface Chemistry. Langmuir 2019, 35, 9115–9132. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.H.; Wei, Q.; Sun, D.W. Carbon dots: Principles and their applications in food quality and safety detection. Crit. Rev. Food Sci. Nutr. 2018, 58, 2466–2475. [Google Scholar] [CrossRef] [PubMed]
- Kousheh, S.A.; Moradi, M.; Tajik, H.; Molaei, R. Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria. Int. J. Biol. Macromol. 2020, 155, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Salimi, F.; Moradi, M.; Tajik, H.; Molaei, R. Optimization and characterization of eco-friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (Morus Alba, L.). J. Sci. Food Agric. 2020, 101, 3439–3447. [Google Scholar] [CrossRef] [PubMed]
- Peptide-Based Carbon Nanotube Hair Colorants and Their Use in Hair Colorant and Cosmetic Compositions. Available online: https://patents.google.com/patent/WO2005117537A3 (accessed on 10 July 2021).
- Hair Coloring and Cosmetic Compositions Comprising Carbon Nanotubes. Available online: https://patents.google.com/patent/WO2006052276A2 (accessed on 10 July 2021).
- Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M.V. Review on the Antimicrobial Properties of Carbon Nanostructures. Materials 2017, 10, 1066. [Google Scholar] [CrossRef]
- Jamróz, E.; Khachatryan, G.; Kopel, P.; Juszczak, L.; Kawecka, A.; Krzyściak, P.; Kucharek, M.; Bębenek, Z.; Zimowska, M. Furcellaran nanocomposite films: The effect of nanofillers on the structural, thermal, mechanical and antimicrobial properties of biopolymer films. Carbohydr. Polym. 2020, 240, 116244. [Google Scholar] [CrossRef] [PubMed]
- Panchal, A.G.; Fakhrullina, G.I.; Fakhrullin, R.F.; Lvov, Y.M. Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale 2018, 10, 18205–18216. [Google Scholar] [CrossRef] [PubMed]
- Suh, Y.J. Use of Natural Halloysite as a Functional Cosmetics Carrier. Econ. Environ. Geol. 2015, 48, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Farhoodi, M. Nanocomposite materials for food packaging applications: Characterization and safety evaluation. Food Eng. Rev. 2016, 8, 35–51. [Google Scholar] [CrossRef]
- Clay Nanopowders. Available online: https://www.nanoshel.com/sections/clay-nanopowders (accessed on 15 August 2021).
- Nanotechnology Products Database. Available online: https://product.statnano.com/company/nanocor-inc (accessed on 16 August 2021).
- Bumbudsanpharoke, N.; Ko, S. Nanoclays in Food and Beverage Packaging. J. Nanomater. 2019, 2019, 8927167. [Google Scholar] [CrossRef] [Green Version]
- Duncan, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 2011, 363, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh-Vazifeh, M.; Hosseini, S.M.; Mohammadi, A.; Jahanfar, M.; Maleki, H. Investigation of the antimicrobial properties of nanoclay and chitosan based nanocomposite on the microbial characteristics of Gouda cheese. Iran. J. Microbiol. 2020, 12, 121–126. [Google Scholar] [CrossRef]
- Davachi, S.M.; Shekarabi, A.S. Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay. Int. J. Biol. Macromol. 2018, 113, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Wang, S. Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. Int. J. Biol. Macromol. 2018, 115, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Maio, A.; Gulino, E.F.; Morreale, M.; La Mantia, F.P. The Effects of Nanoclay on the Mechanical Properties, Carvacrol Release and Degradation of a PLA/PBAT Blend. Materials 2020, 13, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuyan, D.; Greene, G.W.; Das, R.K. Prospects and application of nanobiotechnology in food preservation: Molecular perspectives. Crit. Rev. Biotechnol. 2019, 39, 759–778. [Google Scholar] [CrossRef]
- Murphy, M.; Ting, K.; Zhang, X.; Soo, C.; Zheng, Z. Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J. Nanomater. 2015, 2015, 696918. [Google Scholar] [CrossRef] [Green Version]
- Pathakoti, K.; Morrow, S.; Han, C.; Pelaez, M.; He, X.; Dionysiou, D.D.; Hwang, H.-M. Photoinactivation of Escherichia coli by Sulfur-Doped and Nitrogen–Fluorine-Codoped TiO2 Nanoparticles under Solar Simulated Light and Visible Light Irradiation. Environ. Sci. Technol. 2013, 47, 9988–9996. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Li, Y.; Xiao, W.; Zhang, L.; Zuo, Y.; Xue, J.; Jansen, J.A. Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J. Biomed. Mater. Res. Part A 2008, 85A, 929–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OPINION ON Gold (Nano), Colloidal Gold (Nano), Gold Thioethylamino Hyaluronic Acid (nano) and Acetyl Heptapeptide-9 Colloidal Gold (Nano). Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_251.pdf (accessed on 28 June 2021).
- SCCS OPINION ON Platinum (Nano), Colloidal Platinum (Nano) and Acetyl Tetrapeptide-17 Colloidal Platinum (nano). Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_252.pdf (accessed on 28 June 2021).
- Berger, T.J.; Spadaro, J.A.; Chapin, S.E.; Becker, R.O. Electrically generated silver ions: Quantitative effects on bacterial and mammalian cells. Antimicrob. Agents Chemother. 1976, 9, 357–358. [Google Scholar] [CrossRef] [Green Version]
- Simonetti, N.; Simonetti, G.; Bougnol, F.; Scalzo, M. Electrochemical Ag+ for preservative use. Appl. Env. Microbiol. 1992, 58, 3834–3836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Pulit-Prociak, J.; Grabowska, A.; Chwastowski, J.; Majka, T.M.; Banach, M. Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids Surf. B Biointerfaces 2019, 183, 110416. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hwang, H.-M. Nanotechnology in food science: Functionality, applicability, and safety assessment. J. Food Drug Anal. 2016, 24, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narciso, L.; Coppola, L.; Lori, G.; Andreoli, C.; Zjino, A.; Bocca, B.; Tassinari, R. Genotoxicity, biodistribution and toxic effects of silver nanoparticles after in vivo acute oral administration. NanoImpact 2020, 18, 100221. [Google Scholar] [CrossRef]
- Deng, J.; Ding, Q.M.; Li, W.; Wang, J.H.; Liu, D.M.; Zeng, X.X.; Liu, X.Y.; Ma, L.; Deng, Y.; Su, W.; et al. Preparation of Nano-Silver-Containing Polyethylene Composite Film and Ag Ion Migration into Food-Simulants. J. Nanosci. Nanotechnol. 2020, 20, 1613–1621. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Mazloumi, M.; Nouri, A.; Samaneh, L. Silver-doped Nanoclay with Antibacterial Activity. J. Ultrafine Grained Nanostruct. Mater. 2017, 50, 124–131. [Google Scholar] [CrossRef]
- Cozmuta, A.M.; Peter, A.; Cozmuta, L.M.; Nicula, C.; Crisan, L.; Baia, L.; Turila, A. Active Packaging System Based on Ag/TiO2Nanocomposite Used for Extending the Shelf Life of Bread. Chemical and Microbiological Investigations. Packag. Technol. Sci. 2014, 28, 271–284. [Google Scholar] [CrossRef]
- Becaro, A.A.; Puti, F.C.; Correa, D.S.; Paris, E.C.; Marconcini, J.M.; Ferreira, M.D. Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging: Characterization of Physico-Chemical and Anti-Microbial Properties. J. Nanosci. Nanotechnol. 2015, 15, 2148–2156. [Google Scholar] [CrossRef] [PubMed]
- Brito, S.D.C.; Bresolin, J.D.; Sivieri, K.; Ferreira, M.D. Low-density polyethylene films incorporated with silver nanoparticles to promote antimicrobial efficiency in food packaging. Food Sci. Technol. Int. 2020, 26, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Azlin-Hasim, S.; Cruz-Romero, M.C.; Morris, M.A.; Cummins, E.; Kerry, J.P. Spray coating application for the development of nanocoated antimicrobial low-density polyethylene films to increase the shelf life of chicken breast fillets. Food Sci. Technol. Int. 2018, 24, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Lin, H.; Kannan, P.; Wang, C.; Zhong, Y.; Huang, Y.; Guo, Z. Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Films. Langmuir 2018, 34, 14537–14545. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jeong, D.; Kanmani, P. Study on physical and mechanical properties of the biopolymer/silver based active nanocomposite films with antimicrobial activity. Carbohydr. Polym. 2019, 224, 115159. [Google Scholar] [CrossRef]
- Shankar, S.; Tanomrod, N.; Rawdkuen, S.; & Rhim, J.-W. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int. J. Biol. Macromol. 2016, 92, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Rhim, J.W.; Wang, L.F.; Lee, Y.; Hong, S.I. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: Laser ablation method. Carbohydr. Polym. 2014, 103, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Ma, H.L.; Du, Z.H.; Yang, B.; Wu, J.; Wang, R.; Zhang, X.Q. Hydrophilic and Antibacterial Modification of Poly(lactic acid) Films by γ-ray Irradiation. ACS Omega 2019, 4, 21439–21445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavakoli, H.; Rastegar, H.; Taherian, M.; Samadi, M.; Rostami, H. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Ital. J. Food Saf. 2017, 6, 6874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Bala, R.; Gondil, V.S.; Pandey, S.K.; Chhibber, S.; Jain, D.V.S.; Sharma, R.K.; Wangoo, N. Combating food pathogens using sodium benzoate functionalized silver nanoparticles: Synthesis, characterization and antimicrobial evaluation. J. Mater. Sci. 2017, 52, 8568–8575. [Google Scholar] [CrossRef]
- El-Wakil, N.A.; Hassan, E.A.; Abou-Zeid, R.E.; Dufresne, A. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr. Polym. 2015, 124, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Sani, M.A.; Ehsani, A.; Hashemi, M. Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int. J. Food Microbiol. 2017, 251, 8–14. [Google Scholar] [CrossRef]
- Mirhosseini, F.; Amiri, M.; Daneshkazemi, A.; Zandi, H.; Javadi, Z.S. Antimicrobial Effect of Different Sizes of Nano Zinc Oxide on Oral Microorganisms. Front. Dent. 2019, 16, 105–112. [Google Scholar] [CrossRef]
- Hosny, A.E.; Kashef, M.T.; Taher, H.A.; El-Bazza, Z.E. The use of unirradiated and γ-irradiated zinc oxide nanoparticles as a preservative in cosmetic preparations. Int. J. Nanomed. 2017, 12, 6799–6811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, S.; Zhang, H.; Dai, H.; Xiao, H. Starch-Based Flexible Coating for Food Packaging Paper with Exceptional Hydrophobicity and Antimicrobial Activity. Polymers 2018, 10, 1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:012:0001:0089:EN:PDF (accessed on 12 July 2021).
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid. Interface Sci. 2004, 108, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Herman, A.P.; Domagalska, B.W.; Młynarczyk, A. Essential oils and herbal extracts as antimicrobial agents in cosmetic emulsion. Indian J. Microbiol. 2013, 53, 232–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maccioni, A.M.; Anchisi, C.; Sanna, A.; Sardu, C.; Dessi, S. Preservative systems containing essential oils in cosmetic products. Int. J. Cosmet. Sci. 2002, 24, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Yazgan, H.; Ozogul, Y.; Kuley, E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int. J. Food. Microbiol. 2019, 306, 108266. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.C.; Huang, D.W.; Wang, C.R.; Yeh, C.H.; Tsai, J.C.; Huang, Y.T.; Li, P.H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. Food Drug Anal. 2018, 26, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters. Food Chem. 2019, 291, 199–206. [Google Scholar] [CrossRef]
- Ahmadi, O.; Jafarizadeh-Malmiri, H. Green approach in food nanotechnology based on subcritical water: Effects of thyme oil and saponin on characteristics of the prepared oil in water nanoemulsions. Food Sci. Biotechnol. 2020, 29, 783–792. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Das, S.; Deepika; Prasad, J.; Dwivedy, A.K.; Dubey, N.K. Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative. Food Chem. Toxicol. 2020, 143, 111536. [Google Scholar] [CrossRef] [PubMed]
- Al-Assiuty, B.A.; Nenaah, G.E.; Ageba, M.E. Chemical profile, characterization and acaricidal activity of essential oils of three plant species and their nanoemulsions against Tyrophagus putrescentiae, a stored-food mite. Exp. Appl. Acarol. 2019, 79, 359–376. [Google Scholar] [CrossRef]
- Bedoya-Serna, C.M.; Dacanal, G.C.; Fernandes, A.M.; Pinho, S.C. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: In vitro study and application in Minas Padrão cheese. Braz. J. Microbiol. 2018, 49, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Vishakha, K.; Banerjee, S.; Mondal, S.; Ganguli, A. Sodium alginate-based edible coating containing nanoemulsion of Citrus sinensis essential oil eradicates planktonic and sessile cells of food-borne pathogens and increased quality attributes of tomatoes. Int. J. Biol. Macromol. 2020, 162, 1770–1779. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, S.; Pajohi-Alamoti, M.; Aghajani, N.; Bazargani-Gilani, B.; Nourian, A. Stability and antibacterial activity of Thymus daenensis L. essential oil nanoemulsion in mayonnaise. J. Sci. Food Agric. 2021, 101, 3880–3888. [Google Scholar] [CrossRef] [PubMed]
- Sharif, H.R.; Abbas, S.; Majeed, H.; Safdar, W.; Shamoon, M.; Khan, M.A.; Shoaib, M.; Raza, H.; Haider, J. Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch. J. Food Sci. Technol. 2017, 54, 3358–3365. [Google Scholar] [CrossRef] [PubMed]
- Bento, R.; Pagán, E.; Berdejo, D.; de Carvalho, R.J.; García-Embid, S.; Maggi, F.; Magnani, M.; de Souza, E.L.; García-Gonzalo, D.; Pagán, R. Chitosan nanoemulsions of cold-pressed orange essential oil to preserve fruit juices. Int. J. Food Microbiol. 2020, 331, 108786. [Google Scholar] [CrossRef] [PubMed]
- Gago, C.M.L.; Artiga-Artigas, M.; Antunes, M.D.C.; Faleiro, M.L.; Miguel, M.G.; Martín-Belloso, O. Effectiveness of nanoemulsions of clove and lemongrass essential oils and their major components against Escherichia coli and Botrytis cinerea. J. Food Sci. Technol. 2019, 56, 2721–2736. [Google Scholar] [CrossRef] [PubMed]
- Ghani, S.; Barzegar, H.; Noshad, M.; Hojjati, M. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int. J. Biol. Macromol. 2018, 112, 197–202. [Google Scholar] [CrossRef]
- Deepika; Singh, A.; Chaudhari, A.K.; Das, S.; Dubey, N.K. Zingiber zerumbet L. essential oil-based chitosan nanoemulsion as an efficient green preservative against fungi and aflatoxin B1 contamination. J. Food Sci. 2021, 86, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, R.S.; Mattoso, L.H.; de Moura, M.R. New Edible Bionanocomposite Prepared by Pectin and Clove Essential Oil Nanoemulsions. J. Nanosci. Nanotechnol. 2016, 16, 6540–6544. [Google Scholar] [CrossRef]
- Wan, J.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Influence of oil phase composition on the antifungal and mycotoxin inhibitory activity of clove oil nanoemulsions. Food Funct. 2018, 9, 2872–2882. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Cayado, L.A.; Santos, J.; Calero, N.; Alfaro-Rodríguez, M.C.; Muñoz, J. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil. J. Sci. Food Agric. 2020, 100, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, S.F.; du Toit, L.C.; Parry, A.; Pillay, V.; Choonara, Y.E. Encapsulation of Essential Oils within a Polymeric Liposomal Formulation for Enhancement of Antimicrobial Efficacy. Nat. Prod. Commun. 2010, 5, 1934578X1000500. [Google Scholar] [CrossRef] [Green Version]
- Cacciatore, F.A.; Dalmás, M.; Maders, C.; Isaía, H.A.; Brandelli, A.; Malheiros, P.S. Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel. Food Res. Int. 2020, 133, 109143. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.B.; Heckler, C.; Tondo, E.C.; Daroit, D.J.; Malheiros, P.S. Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. Int. J. Food Microbiol. 2017, 252, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Haggag, M.G.; Shafaa, M.W.; Kareem, H.S.; El-Gamil, A.M.; El-Hendawy, H.H. Screening and enhancement of the antimicrobial activity of some plant oils using liposomes as nanoscale carrier. Bull. Natl. Res. Cent. 2021, 45, 38. [Google Scholar] [CrossRef]
- Haghju, S.; Beigzadeh, S.; Almasi, H.; Hamishehkar, H. Chitosan films incorporated with nettle (Urtica dioica L.) extract-loaded nanoliposomes: I. Physicochemical characterisation and antimicrobial properties. J. Microencapsul. 2016, 33, 438–448. [Google Scholar] [CrossRef]
- Niaz, T.; Shabbir, S.; Noor, T.; Abbasi, R.; Raza, Z.A.; Imran, M. Polyelectrolyte Multicomponent Colloidosomes Loaded with Nisin Z for Enhanced Antimicrobial Activity against Foodborne Resistant Pathogens. Front. Microbiol. 2018, 8, 2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malheiros, P.S.; Sant’Anna, V.; Barbosa, M.S.; Brandelli, A.; Franco, B.D.G.M. Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int. J. Food Microbiol. 2012, 156, 272–277. [Google Scholar] [CrossRef]
- Pinilla, C.M.B.; Brandelli, A. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innov. Food Sci. Emerg. Technol. 2016, 36, 287–293. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, C.; Lin, L. The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu. Food Control 2015, 56, 128–134. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, H.; Lin, L. The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control 2016, 61, 92–98. [Google Scholar] [CrossRef]
- Zielińska, A.; Nowak, I. Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients. Nanobiomaterials Galen. Formul. Cosmet. 2016, 10, 231–255. [Google Scholar] [CrossRef]
- Muzzalupo, R.; Mazzotta, E. Do niosomes have a place in the field of drug delivery? Expert Opin. Drug Deliv. 2019, 16, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Bekraki, A.I. Liposomes-and niosomes-based drug delivery systems for tuberculosis treatment. In Nanotechnology Based Approaches for Tuberculosis Treatment; Elsevier: Chennai, India, 2020; pp. 107–122. [Google Scholar] [CrossRef]
- Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 2010, 1, 374–380. [Google Scholar] [CrossRef]
- Rogerson, A. Adriamycin-loaded niosomes–drug entrapment, stability and release. J. Microencap. 1987, 4, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.; Pando, D.; Gutiérrez, G. Nanoencapsulation of food ingredients by niosomes. Lipid-Based Nanostructures Food Encapsulation Purp. 2019, 11, 447–481. [Google Scholar] [CrossRef]
- Machado, N.D.; Gutiérrez, G.; Matos, M.; Fernández, M.A. Preservation of the Antioxidant Capacity of Resveratrol via Encapsulation in Niosomes. Foods 2021, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Basiri, L.; Rajabzadeh, G.; Bostan, A. α-Tocopherol-loaded niosome prepared by heating method and its release behavior. Food Chem. 2017, 221, 620–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrarya, M.; Gharehchelou, B.; Poodeh, S.H.; Jamshidifar, E.; Karimifard, S.; Far, B.F.; Akbarzadeh, I.; Seifalian, A. Niosomal formulation for antibacterial applications. J. Drug Target. 2022, 31, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Eiras, F.; Amaral, M.H.; Silva, R.; Martins, E.; Lobo, J.M.S.; Silva, A. Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles. Int. J. Pharm. 2017, 519, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release 2009, 133, 238–244. [Google Scholar] [CrossRef]
- Carbone, C.; Teixeira, M.D.C.; Sousa, M.D.C.; Martins-Gomes, C.; Silva, A.M.; Souto, E.B.; Musumeci, T. Clotrimazole-loaded mediterranean essential oils NLC: A synergic treatment of Candida skin infections. Pharmaceutics 2019, 11, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.S.; Na, Y.G.; Choi, J.H.; Kim, I.; Lee, E.; Kim, S.-Y.; Lee, J.-Y.; Cho, C.-W. The Improvement of Skin Whitening of Phenylethyl Resorcinol by Nanostructured Lipid Carriers. Nanomaterials 2017, 7, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, S.H.; Kim, H.; Lee, H.; Song, J.E.; Park, S.G.; Kang, N.G. Synthesis of Retinol-Loaded Lipid Nanocarrier via Vacuum Emulsification to Improve Topical Skin Delivery. Polymers 2021, 13, 826. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.A.; Date, A.A.; Joshi, M.D.; Patravale, V.B. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery. Int. J. Pharm. 2007, 345, 163–171. [Google Scholar] [CrossRef]
- Korkm, E.; Gokce, E.H.; Ozer, O. Development and evaluation of coenzyme Q10 loaded solid lipid nanoparticle hydrogel for enhanced dermal delivery. Acta. Pharm. 2013, 63, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Zardini, A.A.; Mohebbi, M.; Farhoosh, R.; Bolurian, S. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification. J. Food. Sci. Technol. 2018, 55, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.; Jung, S.; Cho, H.K.; Kim, Y.H.; Kim, G.H.; Kim, D.; Ko, B.H.; Lee, J. Design and Characterization of Elastic Artificial Skin Containing Adenosine-Loaded Solid Lipid Nanoparticles for Treating Wrinkles. Pharmaceutics 2020, 13, 33. [Google Scholar] [CrossRef]
- Neves, A.R.; Lúcio, M.; Martins, S.; Lima, J.L.; Reis, S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomed. 2013, 8, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Gokce, E.H.; Korkmaz, E.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: Evaluation of antioxidant potential for dermal applications. Int. J. Nanomed. 2012, 7, 1841–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Lu, Z.; Li, D.; Hu, J. Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chem. 2018, 248, 78–85. [Google Scholar] [CrossRef]
- Lai, F.; Wissing, S.A.; Müller, R.H.; Fadda, A.M. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: Preparation and characterization. Aaps Pharmscitech 2006, 7, E10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruktanonchai, U.; Bejrapha, P.; Sakulkhu, U.; Opanasopit, P.; Bunyapraphatsara, N.; Junyaprasert, V.; Puttipipatkhachorn, S. Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid. Aaps Pharmscitech 2009, 10, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Huang, S.; Sun, X.; Han, L.; Chang, C.; Zhang, W.; Zhong, Q. Carvacrol Loaded Solid Lipid Nanoparticles of Propylene Glycol Monopalmitate and Glyceryl Monostearate: Preparation, Characterization, and Synergistic Antimicrobial Activity. Nanomaterials 2019, 9, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerreto, F.; Paolicelli, P.; Cesa, S.; Amara, H.M.A.; D’Auria, F.D.; Simonetti, G.; Casadei, M.A. Solid lipid nanoparticles as effective reservoir systems for long-term preservation of multidose formulations. Aaps Pharmscitech 2013, 14, 847–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peres, L.B.; de Araújo, P.H.H.; Sayer, C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf. B Biointerfaces 2016, 140, 317–323. [Google Scholar] [CrossRef]
- Almeida, A.J.; Runge, S.; Müller, R.H. Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. Int. J. Pharm. 1997, 149, 255–265. [Google Scholar] [CrossRef]
- Zhang, Q.; Yie, G.; Li, Y.; Yang, Q.; Nagai, T. Studies on the cyclosporine A loaded stearic acid nanoparticles. Int. J. Pharm. 2000, 200, 153–159. [Google Scholar] [CrossRef]
- Ugazio, E.; Cavalli, R.; Gasco, M.R. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int. J. Pharm. 2002, 241, 341–344. [Google Scholar] [CrossRef]
- Salmaso, S.; Bersani, S.; Elvassore, N.; Bertucco, A.; Caliceti, P. Biopharmaceutical characterisation of insulin and recombinant human growth hormone loaded lipid submicron particles produced by supercritical gas micro-atomisation. Int. J. Pharm. 2009, 379, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm. 2006, 327, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Anderluzzi, G.; Lou, G.; Su, Y.; Perrie, Y. Scalable Manufacturing Processes for Solid Lipid Nanoparticles. Pharm. Nanotechnol. 2019, 7, 444–459. [Google Scholar] [CrossRef] [PubMed]
- Prombutara, P.; Kulwatthanasal, Y.; Supaka, N.; Sramala, I.; Chareonpornwattana, S. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control 2012, 24, 184–190. [Google Scholar] [CrossRef]
- Christoforidis, J.B.; Chang, S.; Jiang, A.; Wang, J.; Cebulla, C.M. Intravitreal Devices for the Treatment of Vitreous Inflammation. Mediat. Inflamm. 2012, 2012, 126463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadian, E.; Dizaj, S.M.; Eftekhari, A.; Dalir, E.; Vahedi, P.; Hasanzadeh, A.; Samiei, M. The potential applications of hyaluronic acid hydrogels in biomedicine. Drug Res. 2020, 70, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Paula, G.A.; Benevides, N.M.; Cunha, A.P.; de Oliveira, A.V.; Pinto, A.M.; Morais, J.P.S.; Azeredo, H.M. Development and characterization of edible films from mixtures of κ-carrageenan, ι-carrageenan, and alginate. Food Hydrocoll. 2015, 47, 140–145. [Google Scholar] [CrossRef]
- Vishnuvarthanan, M.; Rajeswari, N. Preparation and characterization of carrageenan/silver nanoparticles/Laponite nanocomposite coating on oxygen plasma surface modified polypropylene for food packaging. J. Food Sci. Technol. 2019, 56, 2545–2552. [Google Scholar] [CrossRef]
- Lopes, N.A.; Pinilla, C.M.B.; Brandelli, A. Pectin and polygalacturonic acid-coated liposomes as novel delivery system for nisin: Preparation, characterization and release behavior. Food Hydrocoll. 2017, 70, 1–7. [Google Scholar] [CrossRef]
- Nanofibers for Medical and Cosmetics Market Overview. Available online: https://www.industryarc.com/Report/19576/nanofibers-for-medical-and-cosmetics-market.html (accessed on 20 August 2021).
- Cui, H.; Wu, J.; Li, C.; Lin, L. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. LWT—Food Sci. Technol. 2017, 81, 233–242. [Google Scholar] [CrossRef]
- Zohri, M.; Alavidjeh, M.S.; Mirdamadi, S.S.; Behmadi, H.; Nasr, S.M.H.; Gonbaki, S.E.; Ardestani, M.S.; Arabzadeh, A.J. Nisin-Loaded Chitosan/Alginate Nanoparticles: A Hopeful Hybrid Biopreservative. J. Food Saf. 2013, 33, 40–49. [Google Scholar] [CrossRef]
- da Silva, F.T.; da Cunha, K.F.; Fonseca, L.M.; Antunes, M.D.; Halal, S.L.M.W.; Fiorentini, A.M.; Zavareze, E.R.; Dias, A.R.G. Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. Int. J. Biol. Macromol. 2018, 118, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh-Tabari, Z.; Zeinali Heris, S.; Moradi, M.; Kahani, M. The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries. Renew. Sustain. Energy Rev. 2016, 58, 1318–1326. [Google Scholar] [CrossRef]
- Tamilselvan, K.; Sivabalan, B.; Prakash, R.; Manojprasath, M.; Mahabubadsha, A. Experimental Analysis of Heat Transfer Rate in Corrugated Plate Heat Exchanger Using Nanofluid in Milk Pastuerization Process. Int. J. Eng. Appl. Sci. 2017, 4, 257465. [Google Scholar]
- Nanomilling: A Key Option for Formulating Water-Insoluble APIs. Available online: https://lubrizolcdmo.com/blog/nanomilling-option-for-formulating-water-insoluble-apis/ (accessed on 12 July 2021).
- Bhawana; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin Nanoparticles: Preparation, Characterization, and Antimicrobial Study. J. Agric. Food Chem. 2011, 59, 2056–2061. [Google Scholar] [CrossRef]
- Bazaraa, W.A.; Ammar, A.S.; Aqlan, A.M. Effects of kiwi’s pectin methylesterase inhibitor, nanomilling and pasteurization on orange juice quality. Food Sci. Nutr. 2020, 8, 6367–6379. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sun, D.W.; Pu, H.; Wei, Q. Development of Nanozymes for Food Quality and Safety Detection: Principles and Recent Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1496–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Ding, Y.-N.; Yang, B.; Liu, Z.; Zhang, X.; Liu, Q. Iron doped CuSn(OH)(6) microspheres as a peroxidase-mimicking artificial enzyme for H2O2 colorimetric detection. ACS Sustain. Chem. Eng. 2018, 6, 14383–14393. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Q.; Zhu, J.; Luo, L.; Pu, S.; Zhang, W.; Wang, J. Portable colorimetric detection of mercury(II) based on a non-noble metal nanozyme with tunable activity. Inorg. Chem. 2019, 58, 1638–1646. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, D.-W.; Pu, H.; Wei, Q. Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 2019, 197, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-X.; Xue, S.-F.; Deng, J.; Zhang, M.; Shi, G.; Zhou, T. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides. Biosens. Bioelectron. 2016, 85, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.J.; Chen, K.; Zhang, W.T.; Zhu, W.X.; Liu, X.N.; Wang, J.; Wang, J.L. SsDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sens. Actuators B-Chem. 2018, 269, 87–95. [Google Scholar] [CrossRef]
- Liu, P.; Han, L.; Wang, F.; Li, X.Q.; Petrenko, V.A.; Liu, A.H. Sensitive colorimetric immunoassay of Vibrio parahaemolyticus based on specific nonapeptide probe screening from a phage display library conjugated with MnO2 nanosheets with peroxidase-like activity. Nanoscale 2018, 10, 2825–2833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reducing the Levels of Preservatives in Cosmetic Products through Active Packaging Technologies. Available online: https://cordis.europa.eu/project/id/315720/reporting/fr (accessed on 10 July 2021).
- The Nanopack Consortium. Available online: https://www.nanopack.eu/ (accessed on 10 July 2021).
- Exclusive: Fresh Horizons from New Packaging Technologies. Available online: https://www.worldbakers.com/process/exclusive-fresh-horizons-from-new-packaging-technologies/ (accessed on 10 July 2021).
- NanoPack Project Delivers Shelf-Life Extending Film, Prepares for Commercial Launch. Available online: https://www.packaginginsights.com/news/nanopack-project-delivers-shelf-life-extending-film-prepares-for-commercial-launch.html (accessed on 10 July 2021).
- Titanium Dioxide: E171 No Longer Considered Safe When Used as a Food Additive. Available online: https://www.efsa.europa.eu/en/news/titanium-dioxide-e171-no-longer-considered-safe-when-used-food-additive (accessed on 10 July 2021).
- Ghebretatios, M.; Schaly, S.; Prakash, S. Nanoparticles in the Food Industry and Their Impact on Human Gut Microbiome and Diseases. Int. J. Mol. Sci. 2021, 22, 1942. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raza, S.; Ansari, A.; Siddiqui, N.N.; Ibrahim, F.; Abro, M.I.; Aman, A. Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system. Sci. Rep. 2021, 11, 10500. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A.; Dizaj, S.M.; Chodari, L.; Sunar, S.; Hasanzadeh, A.; Ahmadian, E.; Hasanzadeh, M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother. 2018, 103, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
Composition | Carbon-Based Nanomaterial | Target Microorganism | Application | References |
---|---|---|---|---|
Polylactic acid (PLA)/carbon nanotubes (CNTs)/chitosan (CS) composite fibers | Carbon nanotubes | Staphylococcus aureus, Escherichia coli, Botrytis cinerea and Rhizopus spp. | Strawberries | [30] |
Polylactide/graphene oxide nanosheets/clove essential oil | Graphene oxide sheets | Staphylococcus aureus and Escherichia coli | n/a | [31] |
Chitosan–iron oxide nano-composite hydrogel | Iron oxide-coated graphene oxide | Methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, as well as opportunistic dermatophyte Candida albicans | n/a | [32] |
Paper | Graphene oxide platforms | Pseudomonas syringae, Escherichia coli | Eco-friendly fruit switches | [33] |
Nanocellulose matrix | Carbon dots | Escherichia coli, and Listeria monocytogenes | Films | [34] |
Low-density polyethylene | Halloysite nanotubes | Escherichia coli | Films for hummus spread | [35] |
Composite Production Method | Composition | Target Microorganism | References |
---|---|---|---|
Solid ion exchange | Silver–nanoclay (montmorillonite clay) | Gram-negative bacteria | [81] |
Sol–gel procedure | Silver/TiO2 nanocomposite | B. subtilis and B. cereus | [82] |
Extrusion | Silver NPs embedded in distinct carriers (silica and titanium dioxide) with low-density polyethilene | E. coli and S. aureus | [83] |
Extrusion | Silver NPs in low-density polyethylene | Fungi and Gram-negative bacteria | [84] |
Spray coating | Silver-coated low-density polyethylene films | P. fluorescens, S. aureus and microflora isolated from raw chicken | [85] |
In situ melt blending method | Dodecyl mercaptan-functionalized silver NPs integrated with polypropylene nanocomposite | Gram-negative (E. coli) and Gram-positive (S. aureus) | [86] |
Solution casting method | Silver NPs, pullulan, and pectin | E. coli, L. monocytogenes, S. Typhimurium, S. aureus, B. cereus | [87] |
Solution casting method | Silver NPs and pectin | E. coli and L. monocytogenes | [88] |
Laser ablation method | Silver NPs and agar | L. monocytogenes and E. coli | [89] |
γ-ray irradiation | Silver NPs and poly(lactic acid) | E. coli and S. aureus | [90] |
Extrusion | Polyethylene nano-silver composite films | Molds | [91] |
Application | Essential Oils and Main Constituents | Target Microorganism | Nanoemulsion Formula Info | References |
---|---|---|---|---|
Fish-processing industry | Lemon essential oil (d-limonene, p-cymene, β-pinene) | Food-borne pathogens and fish spoilage bacteria (P. damselae, E. faecalis, V. vulnificus, P. mirabilis, S. liquefaciens, and P. luteola) | Tween 80 (1% w/w) and water (89% w/w), homogenized by using an ultrasonic homogenizer for 15 min at 72 amplitudes | [102] |
Food, cosmetics, and agrochemical industries | Pure citral as a constituent essential oil from citrus fruits | S. aureus, P. aeruginosa, E. faecalis, S. typhimurium, and L. monocytogenes | Span 85 (sorbitane trioleate) and Brij 97 (polyoxyethylene (10) oleyl ether). Two-stage process (polytron and ultrasonic) | [103] |
Cereal grains (wheat, barley, and corn) | Thyme oil (thymol, p-cymene, γ-terpinene, and linalool), lemongrass oil (β-citral, αcitral, D-limonene, and geraniol), peppermint oil (menthol, L-menthone, eucalyptol), cinnamol oil (eugenol), caryophyllene, benzyl benzoate, linalool), clove oil (eugenol, caryophyllene, α-humulene, eugenol acetate) | Two isolates of F. graminearum | 0.5 wt% Tween 80, 5 wt% of total oil phase, and 94.5 wt% phosphate buffer solution (10 mM, pH 7.0) - Total concentration of each essential oil in nanoemulsion was 25 mg/g. | [104] |
Cosmetics and food | Thyme oil (thymol and carvacrol) | S. aureus and P. digitatum | Saponin (solvent and emulsifier) | [105] |
Stored food items | Origanum majorana essential oil (terpinen-4-ol) | Fungi, aflatoxin B1 (AFB1) produced by A. flavus | Chitosan (deacetylation degree >85%), dichloromethane (DCM), dimethyl sulfoxide (DMSO), tripolyphosphate (TPP), anhydrous acetic acid, Tween 80, Tween 20, methanol, perchloric acid, sodium carbonate, chloroform, | [106] |
Stored food mite | Ocimum basilicum (methyl eugenol, α-cubebene, linalool), Achillea fragrantissima (cis-thujone, 3,3,6-trimethyl-1,5-heptadien-4-one, 2,5-dimethyl-3-vinyl-4-hexen-2-ol, and trans-thujone), Achillea santolina (fragranyl acetate (26.1%), 1,6-dimethyl-1,5 cyclooctadiene (12.6%), 1,8 cineole (11.8%), and cis-thujone) | T. putrescentiae (Schrank) | Surfactant (Tween 80) as a non-ionic surfactant and deionized water at a ratio of 1:2:7 | [107] |
Minas Padrão cheese | Origanum vulgare essential oil (constituents not reported) | Cladosporium sp., Fusarium sp., and Penicillium sp. Genera | Sunflower oil, surfactants, deionized water, and oregano essential oil in two formulations: - Cremophor RH 40 (9.75%) and Brij 30 (3.25%) - Cremophor RH 40 (12%) and Span 80 (8%) | [108] |
Edible coatings for fruits and vegetables (tomatoes) | Citrus sinensis essential oil (not reported) | S. typhi and L. monocytogenes | Sodium alginate 10 g L−1, Tween 80 2% (w/v) | [109] |
Mayonnaise | Thymus daenensis L. essential oil (thymol and linalool) | S. Typhimurium, E. coli, and L. monocytogenes | Essentialoil:Tween 80, ratio 1:1, 15 min sonication | [110] |
Aqueous food systems, beverages, and dairy | Black cumin essential oil (thymoquinone, longifolene, p-cymene, β-pinene, borneol, α-pinene, and α-thujene) | Two Gram-positive bacterial (GPB) strains (B. cereus and L. monocytogenes) | Pure CO or FSO or mixture of blackcurrant with canola and flaxseed oil at different ratios (2:8, 4:6, 6:4, and 8:2, respectively), plus octenyl succinic anhydrite modified starch | [111] |
Fruit juices | Cold-pressed sweet orange (Citrus sinensis) essential oil (monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, aliphatic aldehydes, myrcene, α-Pinene, sabinene, β-pinene, δ-3-carene) | E. coli | 3 mL of Tween 80 with 10 mL of Citrus sinensis essential oil | [112] |
Edible coatings | Clove and lemongrass essential oils, citral and eugenol component | E. coli and B. cinerea | Tween 80 (surfactant), food-grade sodium alginate | [113] |
Edible films for meat products | Cinnamon essential oil (terpene mixture and D-limonene) | Gram-negative (E. coli, P. aeruginosa, and S. typhi) and Gram-positive (E. faecium, B. cereus and S. aureus) | First homogenizing 2 wt% cinnamon oils with 98% and aqueous emulsifier solution (1% w/v Soya protein isolate and 0.05 wt% lecithin) in high-speed blender | [114] |
Functional food during storage | Zingiber zerumbet essential oil (camphene, eucalyptol, cis-geraniol) | A. flavus, aflatoxin B1 (AFB1) | Tween-80 | [115] |
Edible packaging for dairy and fruits | Clove essential oil (eugenol) | S. aureus, E. coli | Tween 80 and pectin (film) | [116] |
Application | Targeted Microorganisms | Encapsulated Preservative | References |
---|---|---|---|
Food contact surfaces | S. aureus, L. monocytogenes, E. coli, and Salmonella spp. | Carvacrol | [120] |
Food contact surfaces | S. aureus or S. enterica | Thymol, carvacrol and thymol/carvacrol | [121] |
Milk, yogurt, spices, juice, processed meat, mayonnaise, and tahina | E. coli, Salmonella, and Candida | clove oil, black seed oil, thyme oil, garlic oil, rosemary oil, and green tea, tetracycline | [122] |
Edible films | S. aureus | Nettle (Urtica dioica L.) extract | [123] |
Functional foods, e.g., dairy products and beverages | S. aureus, L. monocytogenes, and E. faecalis | Nisin | [124] |
Minas fresca cheese | L. monocytogenes | Nisin | [125] |
Milk, dairy industry | L. monocytogenes, S. Enteritidis, E. coli, and S. aureus | Nisin and garlic extract | [126] |
Tofu | S. aureus and E. coli | Clove oil | [127] |
Milk containers | S. aureus biofilms | Salvia oil | [128] |
Not reported | (S. aureus, E. coli, S. Typhimurium, and L. monocytogenes | Eugenol | [129] |
Lipid Nanostructure | Incorporated Substance | Application | References |
---|---|---|---|
SLNs | Vitamin E | Cosmetic | [138] |
SLNs | Quercetin | Food | [139] |
NLCs | Mediterranean essential oils | Cosmetic | [140] |
NLCs | Phenylethyl resorcinol | Cosmetic | [141] |
NLCs | Retinol | Cosmetic | [142] |
SLNs | Tretinoin | Cosmetic | [143] |
SLNs | Coenzyme Q10 | Cosmetic | [144] |
SLNs and NLCs | Lycopene | Food | [145] |
SLNs | Adenosine | Cosmetic | [146] |
SLNs and NLCs | Resveratrol | Food and Cosmetic | [147,148] |
SLNs | Citral | Food | [149] |
SLNs | Mosquito repellent essential oils | Cosmetic | [150] |
SLNs and NLCs | Alpha-lipoic acid | Cosmetic | [151] |
SLNs | Carvacrol | Food | [152] |
SLNs and NLCs | Butyl 4-hydroxybenzoate | Cosmetic | [153] |
Lipid Nanostructure | Loaded Preservative | Emulsifiers and Surfactants | Target Microorganism | Result | References |
---|---|---|---|---|---|
SLNs | Parabens | Glyceryl distearate | C. albicans | Sustained release of parabens | [153] |
NLCs | Parabens | Glyceryl distearate and almond oil | C. albicans | Sustained release of parabens | [153] |
SLNs | Nisin | Glycerol monostearate 40–55% and Poloxamer 188 | L. monocytogenes and L. plantarum | Prolonged release of nisin | [161] |
SLNs | Carvacrol | Propylene glycol monopalmitate (PGMP) and Glyceryl monostearate (GMS) mixtures | E. coli and S. aureus | The 2:1 and 1:1 mass ratios of PGMP:GMS were feasible to prepare stable SLNs with enhanced antimicrobial activities. | [152] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelopoulou, P.; Giaouris, E.; Gardikis, K. Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. Nanomaterials 2022, 12, 1196. https://doi.org/10.3390/nano12071196
Angelopoulou P, Giaouris E, Gardikis K. Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. Nanomaterials. 2022; 12(7):1196. https://doi.org/10.3390/nano12071196
Chicago/Turabian StyleAngelopoulou, Paraskevi, Efstathios Giaouris, and Konstantinos Gardikis. 2022. "Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation" Nanomaterials 12, no. 7: 1196. https://doi.org/10.3390/nano12071196