Hydrogenated Amorphous Silicon-Based Nanomaterials as Alternative Electrodes to Graphite for Lithium-Ion Batteries
Abstract
:1. Introduction
Silicon vs. Graphite as Electrode
2. Materials and Methods
2.1. Preparation and Characterization of Hydrogenated Amorphous Silicon (a-Si:H)
2.2. Preparation and Characterization of the Nanowires of Hydrogenated Amorphous Silicon (a-SiNWs)
2.3. Assembly and Characterization of the Lithium-Ion Batteries
3. Results and Discussion
3.1. Intrinsic Amorphous Silicon Nanowires
3.2. n-Doped Hydrogenated Amorphous Silicon
3.3. Electrochemical Performance of the Batteries
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Notton, G.; Nivet, M.-L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renew. Sustain. Energy Rev. 2018, 87, 96–105. [Google Scholar] [CrossRef]
- Ehrler, B. ll Matter of Opinion Unleashing the power of materials science for a sustainable future. Matter 2022, 5, 2386–2389. [Google Scholar] [CrossRef]
- Hu, Y.-S.; Lu, Y. 2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries. ACS Energy Lett. 2019, 4, 2689–2690. [Google Scholar] [CrossRef] [Green Version]
- Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4, 5387–5416. [Google Scholar] [CrossRef]
- Cheng, H.; Shapter, J.G.; Li, Y.; Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 2021, 57, 451–468. [Google Scholar] [CrossRef]
- Nzereogu, P.; Omah, A.; Ezema, F.; Iwuoha, E.; Nwanya, A. Anode materials for lithium-ion batteries: A review. Appl. Surf. Sci. Adv. 2022, 9, 100233. [Google Scholar] [CrossRef]
- Shin, S.; Jung, G.; Lee, W.-J.; Kang, C.; Wang, J. Recovery of Electrodic Powder From Spent Lithium Ion Batteries (LIBs). Arch. Met. Mater. 2015, 60, 1145–1149. [Google Scholar] [CrossRef]
- Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU-a Foresight Study; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional Materials for Rechargeable Batteries. Adv. Mater. 2011, 23, 1695–1715. [Google Scholar] [CrossRef]
- Mukanova, A.; Jetybayeva, A.; Myung, S.-T.; Kim, S.-S.; Bakenov, Z. A mini-review on the development of Si-based thin film anodes for Li-ion batteries. Mater. Today Energy 2018, 9, 49–66. [Google Scholar] [CrossRef]
- Salah, M.; Murphy, P.; Hall, C.; Francis, C.; Kerr, R.; Fabretto, M. Pure silicon thin-film anodes for lithium-ion batteries: A review. J. Power Sources 2019, 414, 48–67. [Google Scholar] [CrossRef]
- Pinilla, S.; Park, S.-H.; Fontanez, K.; Márquez, F.; Nicolosi, V.; Morant, C. 0D-1D Hybrid Silicon Nanocomposite as Lithium-Ion Batteries Anodes. Nanomaterials 2020, 10, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salah, M.; Hall, C.; Murphy, P.; Francis, C.; Kerr, R.; Stoehr, B.; Rudd, S.; Fabretto, M. Doped and reactive silicon thin film anodes for lithium ion batteries: A review. J. Power Sources 2021, 506, 230194. [Google Scholar] [CrossRef]
- Szczech, J.R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56–72. [Google Scholar] [CrossRef]
- Yin, Y.; Wan, L.; Guo, Y. Silicon-based nanomaterials for lithium-ion batteries. Chin. Sci. Bull. 2012, 57, 4104–4110. [Google Scholar] [CrossRef] [Green Version]
- Misra, S.; Yu, L.; Chen, W.; Foldyna, M.; I Cabarrocas, P.R. A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells. J. Phys. D Appl. Phys. 2014, 47, 393001. [Google Scholar] [CrossRef] [Green Version]
- Van Sark, W.G.J.H.M. Methods of deposition of hydrogenated amorphous silicon for device applications. In Handbook of Thin Film; Academic Press: Cambridge, MA, USA, 2002; pp. 1–215. [Google Scholar]
- Pinilla Yanguas, S. Silicon Nanowires for Energy Generation and Storage. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 2017. [Google Scholar]
- Pinilla, S.; Barrio, R.; González, N.; Casero, R.P.; Márquez, F.; Sanz, J.M.; Morant, C. Role of Hydrogen in the Preparation of Amorphous Silicon Nanowires by Metal-Assisted Chemical Etching. J. Phys. Chem. C 2018, 122, 22667–22674. [Google Scholar] [CrossRef]
- Leonardi, A.; Faro, M.; Irrera, A. Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review. Nanomaterials 2021, 11, 383. [Google Scholar] [CrossRef]
- Arjmand, T.; Legallais, M.; Nguyen, T.T.T.; Serre, P.; Vallejo-Perez, M.; Morisot, F.; Salem, B.; Ternon, C. Functional Devices from Bottom-Up Silicon Nanowires: A Review. Nanomaterials 2022, 12, 1043. [Google Scholar] [CrossRef]
- Cárabe, J.; Gandía, J.J.; González, N.; Galiano, E.; Gutiérrez, M.T. A simple amorphous-silicon photodetector for two-dimensional position sensing. Appl. Phys. Lett. 1996, 69, 3408–3410. [Google Scholar] [CrossRef]
- Torres, I.; Barrio, R.; Santos, J.; González, N.; Gandía, J. Effect of radio frequency power and total mass-flow rate on the properties of microcrystalline silicon films prepared by helium-diluted-silane glow discharge. Thin Solid Films 2010, 518, 7019–7023. [Google Scholar] [CrossRef]
- Santos, J.D.; Fernández, S.; Casado, A.; Baldonedo, J.L.; De Abril, O.; Maffiotte, C.; Gandía, J.J. Influence of the CF4 + O2 plasma treatment of ZnO: Al on a-Si p-i-n solar cell performance. ScienceJet 2012, 1, 1–6. [Google Scholar]
- Barrio, R.; Maffiotte, C.; Gandía, J.; Cárabe, J. Surface characterisation of wafers for silicon-heterojunction solar cells. J. Non-Crystalline Solids 2006, 352, 945–949. [Google Scholar] [CrossRef]
- Barrio, R.; González, N.; Cárabe, J.; Gandía, J.J. Optimisation of NaOH texturisation process of silicon wafers for heterojunction solar-cells applications. Sol. Energy 2012, 86, 845–854. [Google Scholar] [CrossRef]
- Torres, I.; Fernández, S.; Fernández-Vallejo, M.; Arnedo, I.; Gandía, J.J. Graphene-Based Electrodes for Silicon Heterojunction Solar Cell Technology. Materials 2021, 14, 4833. [Google Scholar] [CrossRef] [PubMed]
- Campo, T.; Pinilla, S.; Gálvez, S.; Sanz, J.M.; Márquez, F.; Morant, C. Synthesis Procedure of Highly Densely Packed Carbon Nanotube Forests on TiN. Nanomaterials 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Machín, A.; Fontánez, K.; Arango, J.; Ortiz, D.; De León, J.; Pinilla, S.; Nicolosi, V.; Petrescu, F.; Morant, C.; Márquez, F. One-Dimensional (1D) Nanostructured Materials for Energy Applications. Materials 2021, 14, 2609. [Google Scholar] [CrossRef]
- Pinilla, S.; Machín, A.; Park, S.-H.; Arango, J.C.; Nicolosi, V.; Márquez-Linares, F.; Morant, C. TiO2-Based Nanomaterials for the Production of Hydrogen and the Development of Lithium-Ion Batteries. J. Phys. Chem. B 2017, 122, 972–983. [Google Scholar] [CrossRef]
- Barrio, R.; Gandía, J.; Cárabe, J.; González, N.; Torres, I.; Muñoz, D.; Voz, C. Surface recombination analysis in silicon-heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 282–286. [Google Scholar] [CrossRef]
- Barrio, R.; Gonzalez, N.; Gandía, J.J. SiNx:H Films for Efficient Bulk Passivation of Nonconventional Wafers for Silicon Heterojunction Solar Cells. JOM 2021, 73, 2781–2789. [Google Scholar] [CrossRef]
- Langford, A.; Fleet, M.; Mahan, A. Correction for multiple reflections in infrared spectra of amorphous silicon. Sol. Cells 1989, 27, 373–383. [Google Scholar] [CrossRef]
- Lucovsky, G.; Nemanich, R.J.; Knights, J.C. Structural interpretation of the vibrational spectra ofa-Si: H alloys. Phys. Rev. B 1979, 19, 2064–2073. [Google Scholar] [CrossRef]
- Brodsky, M.H.; Cardona, M.; Cuomo, J.J. Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys. Rev. B 1977, 16, 3556. [Google Scholar] [CrossRef]
- Beattie, S.D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J.-M. Si Electrodes for Li-Ion Batteries—A New Way to Look at an Old Problem. J. Electrochem. Soc. 2008, 155, A158. [Google Scholar] [CrossRef]
T (°C) | naverage (300–2500 nm) | [H635] (%) | [Si-H] (%) | [Si-Hx] (%) | R |
---|---|---|---|---|---|
140 | 3.46 | 21.5 | 11.2 | 16.6 | 0.39 |
170 | 3.48 | 19.6 | 10.1 | 11.4 | 0.32 |
200 | 3.56 | 14.1 | 11.0 | 2.7 | 0.09 |
250 | 3.61 | 10.2 | 8.2 | 0.1 | 0.01 |
270 | 3.62 | 10.9 | 8.9 | - | - |
a-Si:H | T (°C) | n | [H635] (%) | [Si-H] (%) | [Si-Hx] (%) | R | σ (S/cm) | Ea (eV) |
---|---|---|---|---|---|---|---|---|
i | 200 | 3.56 | 14.1 | 11.0 | 2.7 | 0.09 | 4.4 × 10−10 | 0.84 |
n-doped | 200 | 3.46 | 14.8 | 8.5 | 8.4 | 0.29 | 1.4 × 10−2 | 0.18 |
236 | 3.53 | 13.8 | 10.8 | 5.6 | 0.17 | 2.0 × 10−2 | 0.19 | |
250 | 3.56 | 13.7 | 11.7 | 4.7 | 0.13 | 1.5 × 10−2 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrio, R.; González, N.; Portugal, Á.; Morant, C.; Gandía, J.J. Hydrogenated Amorphous Silicon-Based Nanomaterials as Alternative Electrodes to Graphite for Lithium-Ion Batteries. Nanomaterials 2022, 12, 4400. https://doi.org/10.3390/nano12244400
Barrio R, González N, Portugal Á, Morant C, Gandía JJ. Hydrogenated Amorphous Silicon-Based Nanomaterials as Alternative Electrodes to Graphite for Lithium-Ion Batteries. Nanomaterials. 2022; 12(24):4400. https://doi.org/10.3390/nano12244400
Chicago/Turabian StyleBarrio, Rocío, Nieves González, Álvaro Portugal, Carmen Morant, and José Javier Gandía. 2022. "Hydrogenated Amorphous Silicon-Based Nanomaterials as Alternative Electrodes to Graphite for Lithium-Ion Batteries" Nanomaterials 12, no. 24: 4400. https://doi.org/10.3390/nano12244400
APA StyleBarrio, R., González, N., Portugal, Á., Morant, C., & Gandía, J. J. (2022). Hydrogenated Amorphous Silicon-Based Nanomaterials as Alternative Electrodes to Graphite for Lithium-Ion Batteries. Nanomaterials, 12(24), 4400. https://doi.org/10.3390/nano12244400