Implementation of Passing Vehicle Search Algorithm for Optimization of WEDM Process of Nickel-Based Superalloy Waspaloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prepartion of MWCNTs
2.2. Eperimental Plan
2.3. PVS Algorithm
3. Results and Discussions
3.1. Analysis of MWCNT
3.2. Mathematical Regression Equations and ANOVA of MRR, SR, and RLT
3.3. Residual Plots
3.4. Contour Plots
3.5. Effect of Machining Variables on Responses
3.6. Optimization Using PVS Algorithm
3.7. Influence of MWCNTs on MRR, SR, and RLT
3.8. Influence of MWCNTs on Surface Integrity
4. Conclusions
- ANOVA for MRR showed that all model terms were having a noteworthy impact on MRR. With respect to MRR, all machining variables were having a significant effect. Current was found to have the higher impact on MRR followed, by Toff and Ton.
- A similar conclusion can be made for SR, and RLT of ANOVA, for which all the model terms were observed to have substantial impact. For SR, all machining variables had a significant effect, with a large involvement of Ton, followed by current and Toff. On the other hand, RLT, current and Ton had significant effect, with a large impact for current, and Toff was noticed to be a non-significant factor.
- Lack of fit was found to be non-significant for all responses, suggesting the suitability of developed model terms to forecast the future outcomes. Additionally, minor difference between R2 values showed the suitability of the obtained results and the proposed model.
- Verification of four tests of residual plots for all responses signified good ANOVA results and satisfied the necessary conditions for ANOVA.
- A PVS algorithm was implemented for finding the optimum solution of various responses. Individual response optimization has produced highest MRR of 2.6433 g/min and lowest SR and RLT of 3.45 µm and 10.88 µm, respectively.
- Non-dominant Pareto points were produced from PVS algorithm which has given independent and unique solutions. Minor acceptable deviation was recorded among the anticipated and recorded values. This clearly reveals the acceptability of the generated model and PVS technique.
- Machining performance was enhanced by adding MWCNTs at 1 g/L. Accumulation of MWCNTs at 1 g/L has improved the performance of MRR, SR, and RLT by 65.70%, 50.68%, and 40.96%, respectively.
- A reduction of globules of debris, micro-pores and micro-crack free surface, melted material deposition, was observed in terms of surface morphology, wherein 1 g/L MWCNTs was used.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwong, J.; Axinte, D.; Withers, P.; Hardy, M. Minor cutting edge–workpiece interactions in drilling of an advanced nickel-based superalloy. Int. J. Mach. Tools Manuf. 2009, 49, 645–658. [Google Scholar] [CrossRef]
- Palacios, J.; Olvera, D.; Urbikain, G.; Elías-Zúñiga, A.; Martínez-Romero, O.; de Lacalle, L.L.; Rodríguez, C.; Martínez-Alfaro, H. Combination of simulated annealing and pseudo spectral methods for the optimum removal rate in turning operations of nickel-based alloys. Adv. Eng. Softw. 2018, 115, 391–397. [Google Scholar] [CrossRef]
- Vora, J.; Shah, Y.; Khanna, S.; Chaudhari, R. Effect of Near-Dry WEDM Process Variables through Taguchi-based-GRA Approach on Performance Measures of Nitinol. J. Manuf. Mater. Process. 2022, 6, 131. [Google Scholar] [CrossRef]
- Citarella, R.; Cricrì, G.; Lepore, M.; Perrella, M. Thermo-mechanical crack propagation in aircraft engine vane by coupled FEM–DBEM approach. Adv. Eng. Softw. 2014, 67, 57–69. [Google Scholar] [CrossRef]
- Schneider, J.; Williston, D.; Murphy, T.; Varner, C.; Hawkins, J.; Walker, B. Solid state joining of nickel based alloy, Haynes 230. J. Mater. Process. Technol. 2015, 225, 492–499. [Google Scholar] [CrossRef]
- Habeeb, H.; Abou-El-Hossein, K.; Mohamad, B.; Ghani, J.A.; Kadirgama, K. Investigating of tool wear, tool life and surface roughness when machining of nickel alloy 242 with using of different cutting tools. Asian J. Sci. Res 2008, 1, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tools Manuf. 2011, 51, 250–280. [Google Scholar] [CrossRef]
- Ezugwu, E.; Wang, Z.; Machado, A. The machinability of nickel-based alloys: A review. J. Mater. Process. Technol. 1999, 86, 1–16. [Google Scholar] [CrossRef]
- Thellaputta, G.R.; Chandra, P.S.; Rao, C. Machinability of nickel based superalloys: A review. Mater. Today Proc. 2017, 4, 3712–3721. [Google Scholar] [CrossRef]
- Vora, J.; Jain, A.; Sheth, M.; Gajjar, K.; Abhishek, K.; Chaudhari, R. A Review on Machining Aspects of Shape Memory Alloys. In Recent Advances in Mechanical Infrastructure; Springer: Berlin/Heidelberg, Germany, 2022; pp. 449–458. [Google Scholar]
- Rajput, G.S.; Vora, J.; Prajapati, P.; Chaudhari, R. Areas of recent developments for shape memory alloy: A review. Mater. Today Proc. 2022, 62, 7194–7198. [Google Scholar] [CrossRef]
- Choudhury, I.; El-Baradie, M. Machinability of nickel-base super alloys: A general review. J. Mater. Process. Technol. 1998, 77, 278–284. [Google Scholar] [CrossRef]
- Chaudhari, R.; Kevalramani, A.; Vora, J.; Khanna, S.; Patel, V.K.; Pimenov, D.Y.; Giasin, K. Parametric optimization and influence of near-dry WEDM variables on nitinol shape memory alloy. Micromachines 2022, 13, 1026. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, A.; Wankhede, V.; Chaudhari, R. Experimental investigation of high-speed turning of INCONEL 718 using PVD-coated carbide tool under wet condition. In Innovations in Infrastructure; Springer: Berlin/Heidelberg, Germany, 2019; pp. 367–374. [Google Scholar]
- Chaudhari, R.; Patel, H.; Sheth, M.; Prajapati, N.; Fuse, K.; Abhishek, K.; Vora, J. Effect of Different Tool Electrodes (Wire) of WEDM Process of Inconel 718. In Recent Advances in Mechanical Infrastructure; Springer: Berlin/Heidelberg, Germany, 2022; pp. 317–327. [Google Scholar]
- Khanna, N.; Zadafiya, K.; Patel, T.; Kaynak, Y.; Rashid, R.A.R.; Vafadar, A. Review on machining of additively manufactured nickel and titanium alloys. J. Mater. Res. Technol. 2021, 15, 3192–3221. [Google Scholar] [CrossRef]
- Olovsjö, S.; Wretland, A.; Sjöberg, G. The effect of grain size and hardness of Waspaloy on the wear of cemented carbide tools. Int. J. Adv. Manuf. Technol. 2010, 50, 907–915. [Google Scholar] [CrossRef]
- Nalbant, M.; Altın, A.; Gökkaya, H. The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys. Mater. Des. 2007, 28, 1334–1338. [Google Scholar] [CrossRef]
- Reed, R. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Sims, C.T.; Stoloff, N.S.; Hagel, W.C. Superalloys II; Wiley: New York, NY, USA, 1987; Volume 8. [Google Scholar]
- Hanasaki, S.; Fujiwara, J.; Touge, M.; Hasegawa, Y.; Uehara, K. Tool wear of coated tools when machining a high nickel alloy. CIRP Ann. 1990, 39, 77–80. [Google Scholar] [CrossRef]
- Ezugwu, E. Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. Mach. Tools Manuf. 2005, 45, 1353–1367. [Google Scholar] [CrossRef]
- Deepu, J.; Kuppan, P.; Sbalan, A.; Oyyaravelu, R. Investigations on the machinability of Waspaloy under dry environment. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Bangalore, India, 14–16 July 2016; p. 012012. [Google Scholar]
- Vora, J.; Khanna, S.; Chaudhari, R.; Patel, V.K.; Paneliya, S.; Pimenov, D.Y.; Giasin, K.; Prakash, C. Machining parameter optimization and experimental investigations of nano-graphene mixed electrical discharge machining of nitinol shape memory alloy. J. Mater. Res. Technol. 2022, 19, 653–668. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Wang, J.; Yang, Y.; Rao, H.; Wang, H.; Nan, J.; Wang, L. Study on the Evolution of the γ′ Phase and Grain Boundaries in Nickel-Based Superalloy during Interrupted Continuous Cooling. Crystals 2021, 11, 1464. [Google Scholar] [CrossRef]
- Ding, H.; Shin, Y.C. Improvement of machinability of Waspaloy via laser-assisted machining. Int. J. Adv. Manuf. Technol. 2013, 64, 475–486. [Google Scholar] [CrossRef]
- Srinivasan, D.; Veerappan, G.; Ravichandran, M.; Chairman, C.A.; Marichamy, S.; Mohanavel, V.; Karthick, A. Investigation on electric erosion behavior of nickel-based super alloy (Waspaloy: Ni, Cr, Co, Mo, Ti, Al) using response surface methodology. Surf. Topogr. Metrol. Prop. 2021, 9, 035006. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Pramanik, A.; Parikh, D. Optimization of parameters of spark erosion based processes. In Spark Erosion Machining; CRC Press: Boca Raton, FL, USA, 2020; pp. 190–216. [Google Scholar]
- Fuse, K.; Dalsaniya, A.; Modi, D.; Vora, J.; Pimenov, D.Y.; Giasin, K.; Prajapati, P.; Chaudhari, R.; Wojciechowski, S. Integration of Fuzzy AHP and Fuzzy TOPSIS Methods for Wire Electric Discharge Machining of Titanium (Ti6Al4V) Alloy Using RSM. Materials 2021, 14, 7408. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.; Chen, Z.; He, K.; Wu, Y. Feature recognition and volume generation of uncut regions for electrical discharge machining. Adv. Eng. Softw. 2016, 91, 51–62. [Google Scholar] [CrossRef]
- Kumar, K.; Ravikumar, R. Modeling and optimization of wire EDM process. Int. J. Mod. Eng. Res. 2013, 3, 1645–1648. [Google Scholar]
- Li, G.; Wu, G.; Pan, W.; Rahman Rashid, R.A.; Palanisamy, S.; Ding, S. The performance of polycrystalline diamond (PCD) tools machined by abrasive grinding and electrical discharge grinding (EDG) in high-speed turning. J. Manuf. Mater. Process. 2021, 5, 34. [Google Scholar] [CrossRef]
- Rathi, P.; Ghiya, R.; Shah, H.; Srivastava, P.; Patel, S.; Chaudhari, R.; Vora, J. Multi-response Optimization of Ni55. 8Ti Shape Memory Alloy Using Taguchi–Grey Relational Analysis Approach. In Recent Advances in Mechanical Infrastructure; Springer: Berlin/Heidelberg, Germany, 2020; pp. 13–23. [Google Scholar]
- Alhodaib, A.; Shandilya, P.; Rouniyar, A.K.; Bisaria, H. Experimental Investigation on Silicon Powder Mixed-EDM of Nimonic-90 Superalloy. Metals 2021, 11, 1673. [Google Scholar] [CrossRef]
- Al-Amin, M.; Abdul-Rani, A.M.; Ahmed, R.; Shahid, M.U.; Zohura, F.T.; Abd Rani, M.D.B. Multi-objective optimization of process variables for MWCNT-added electro-discharge machining of 316L steel. Int. J. Adv. Manuf. Technol. 2021, 115, 179–198. [Google Scholar] [CrossRef]
- Philip, J.T.; Mathew, J.; Kuriachen, B. Transition from EDM to PMEDM–impact of suspended particulates in the dielectric on Ti6Al4V and other distinct material surfaces: A review. J. Manuf. Process. 2021, 64, 1105–1142. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Patel, V.; López de Lacalle, L.; Parikh, D. Surface analysis of wire-electrical-discharge-machining-processed shape-memory alloys. Materials 2020, 13, 530. [Google Scholar] [CrossRef] [Green Version]
- Goyal, A.; Sharma, D.; Bhowmick, A.; Pathak, V.K. Experimental investigation for minimizing circularity and surface roughness under nano graphene mixed dielectric EDM exercising fuzzy-ANFIS approach. Int. J. Interact. Des. Manuf. 2022, 16, 1135–1154. [Google Scholar] [CrossRef]
- Mughal, M.P.; Farooq, M.U.; Mumtaz, J.; Mia, M.; Shareef, M.; Javed, M.; Jamil, M.; Pruncu, C.I. Surface modification for osseointegration of Ti6Al4V ELI using powder mixed sinking EDM. J. Mech. Behav. Biomed. Mater. 2021, 113, 104145. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, R.; Vora, J.; Lacalle, L.; Khanna, S.; Patel, V.K.; Ayesta, I. Parametric Optimization and Effect of Nano-Graphene Mixed Dielectric Fluid on Performance of Wire Electrical Discharge Machining Process of Ni55. 8Ti Shape Memory Alloy. Materials 2021, 14, 2533. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.Y.; Joshi, A.Y. A systematic review on powder mixed electrical discharge machining. Heliyon 2019, 5, e02963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prihandana, G.S.; Sriani, T.; Mahardika, M.; Hamdi, M.; Miki, N.; Wong, Y.; Mitsui, K. Application of powder suspended in dielectric fluid for fine finish micro-EDM of Inconel 718. Int. J. Adv. Manuf. Technol. 2014, 75, 599–613. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Batish, A.; Singh, G. Optimization of powder mixed electric discharge machining using dummy treated experimental design with analytic hierarchy process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 103–116. [Google Scholar] [CrossRef]
- Jadam, T.; Sahu, S.K.; Datta, S.; Masanta, M. Powder-mixed electro-discharge machining performance of Inconel 718: Effect of concentration of multi-walled carbon nanotube added to the dielectric media. Sādhanā 2020, 45, 135. [Google Scholar] [CrossRef]
- Mandal, P.; Mondal, S.C. Multi-objective optimization of Cu-MWCNT composite electrode in electro discharge machining using MOPSO-TOPSIS. Measurement 2021, 169, 108347. [Google Scholar] [CrossRef]
- Jadam, T.; Sahu, S.K.; Datta, S.; Masanta, M. EDM performance of Inconel 718 superalloy: Application of multi-walled carbon nanotube (MWCNT) added dielectric media. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 305. [Google Scholar] [CrossRef]
- Mohammadzadeh Sari, M.; Noordin, M.; Brusa, E. Role of multi-wall carbon nanotubes on the main parameters of the electrical discharge machining (EDM) process. Int. J. Adv. Manuf. Technol. 2013, 68, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Misra, J.; Danish, M.; Singh, A.; Ullah, M. Effect of wire related parameters and servo feed on process performance characteristics during WEDM of combustor material. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kattankulathur, India, 22–24 March 2018; p. 012165. [Google Scholar]
- Singh, H.; Garg, R. Effects of process parameters on material removal rate in WEDM. J. Achiev. Mater. Manuf. Eng. 2009, 32, 70–74. [Google Scholar]
- Kumar, V.; Jangra, K.; Kumar, V. Effect of WEDM parameters on machinability of Nimonic-90. In Proceedings of the Proceedings of the national conference on trends and advances in mechanical engineering (TAME), YMCA University of Science and Technology, Faridabad, India, 19–20 October 2012; pp. 511–516.
- Soni, H.; Sannayellappa, N.; Rangarasaiah, R.M. An experimental study of influence of wire electro discharge machining parameters on surface integrity of TiNiCo shape memory alloy. J. Mater. Res. 2017, 32, 3100–3108. [Google Scholar] [CrossRef]
- Manjaiah, M.; Narendranath, S.; Basavarajappa, S.; Gaitonde, V. Effect of electrode material in wire electro discharge machining characteristics of Ti50Ni50− xCux shape memory alloy. Precis. Eng. 2015, 41, 68–77. [Google Scholar] [CrossRef]
- Shabgard, M.; Khosrozadeh, B. Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process. J. Manuf. Process. 2017, 25, 212–219. [Google Scholar] [CrossRef]
- Izman, S.; Ghodsiyeh, D.; Hamed, T.; Rosliza, R.; Rezazadeh, M. Effects of adding multiwalled carbon nanotube into dielectric when EDMing titanium alloy. In Advanced Materials Research; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2012; pp. 1445–1449. [Google Scholar]
- Mai, C.; Hocheng, H.; Huang, S. Advantages of carbon nanotubes in electrical discharge machining. Int. J. Adv. Manuf. Technol. 2012, 59, 111–117. [Google Scholar] [CrossRef]
- Chaudhari, R.; Khanna, S.; Vora, J.; Patel, V.K.; Paneliya, S.; Pimenov, D.Y.; Giasin, K.; Wojciechowski, S. Experimental investigations and optimization of MWCNTs-mixed WEDM process parameters of nitinol shape memory alloy. J. Mater. Res. Technol. 2021, 15, 2152–2169. [Google Scholar] [CrossRef]
- Vora, J.; Parikh, N.; Chaudhari, R.; Patel, V.K.; Paramar, H.; Pimenov, D.Y.; Giasin, K. Optimization of Bead Morphology for GMAW-Based Wire-Arc Additive Manufacturing of 2.25 Cr-1.0 Mo Steel Using Metal-Cored Wires. Appl. Sci. 2022, 12, 5060. [Google Scholar] [CrossRef]
- Fuse, K.; Chaudhari, R.; Vora, J.; Patel, V.K.; de Lacalle, L.N.L. Multi-Response Optimization of Abrasive Waterjet Machining of Ti6Al4V Using Integrated Approach of Utilized Heat Transfer Search Algorithm and RSM. Materials 2021, 14, 7746. [Google Scholar] [CrossRef]
- Savsani, P.; Savsani, V. Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl. Math. Model. 2016, 40, 3951–3978. [Google Scholar] [CrossRef]
- Vora, J.; Chaudhari, R.; Patel, C.; Pimenov, D.Y.; Patel, V.K.; Giasin, K.; Sharma, S. Experimental Investigations and Pareto Optimization of Fiber Laser Cutting Process of Ti6Al4V. Metals 2021, 11, 1461. [Google Scholar] [CrossRef]
- Chaudhari, R.; Parmar, H.; Vora, J.; Patel, V.K. Parametric study and investigations of bead geometries of GMAW-based wire–arc additive manufacturing of 316L stainless steels. Metals 2022, 12, 1232. [Google Scholar] [CrossRef]
- Chaudhari, R.; Ayesta, I.; Doshi, M.; Khanna, S.; Patel, V.K.; Vora, J.; De Lacalle, L.N.L. Effect of Multi-walled carbon nanotubes on the performance evaluation of Nickel-based super-alloy–Udimet 720 machined using WEDM process. Int. J. Adv. Manuf. Technol. 2022, 123, 2087–2105. [Google Scholar] [CrossRef]
- Chaudhari, R.; Shah, H.; Ayesta, I.; Lacalle, L.; Vora, J. Experimental Investigations and Optimization of WEDM Parameters Using Taguchi Analysis of Pure Titanium. In Recent Advances in Mechanical Infrastructure; Springer: Berlin/Heidelberg, Germany, 2022; pp. 349–358. [Google Scholar]
- Vakharia, V.; Vora, J.; Khanna, S.; Chaudhari, R.; Shah, M.; Pimenov, D.Y.; Giasin, K.; Prajapati, P.; Wojciechowski, S. Experimental investigations and prediction of WEDMed surface of Nitinol SMA using SinGAN and DenseNet deep learning model. J. Mater. Res. Technol. 2022, 18, 325–337. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Prabu, S.; Palani, I.; Patel, V.K.; Parikh, D. Pareto optimization of WEDM process parameters for machining a NiTi shape memory alloy using a combined approach of RSM and heat transfer search algorithm. Adv. Manuf. 2021, 9, 64–80. [Google Scholar] [CrossRef]
- Aggarwal, V.; Pruncu, C.I.; Singh, J.; Sharma, S.; Pimenov, D.Y. Empirical investigations during WEDM of Ni-27Cu-3.15 Al-2Fe-1.5 Mn based superalloy for high temperature corrosion resistance applications. Materials 2020, 13, 3470. [Google Scholar] [CrossRef]
- Patel Gowdru Chandrashekarappa, M.; Kumar, S.; Pimenov, D.Y.; Giasin, K. Experimental analysis and optimization of EDM parameters on HcHcr steel in Context with different electrodes and dielectric fluids using hybrid Taguchi-based PCA-utility and Critic-utility approaches. Metals 2021, 11, 419. [Google Scholar] [CrossRef]
- Singh, M.; Maharana, S.; Yadav, A.; Singh, R.; Maharana, P.; Nguyen, T.V.; Yadav, S.; Loganathan, M. An experimental investigation on the material removal rate and surface roughness of a hybrid aluminum metal matrix composite (Al6061/sic/gr). Metals 2021, 11, 1449. [Google Scholar] [CrossRef]
- Kumar, S.S.; Varol, T.; Canakci, A.; Kumaran, S.T.; Uthayakumar, M. A review on the performance of the materials by surface modification through EDM. Int. J. Lightweight Mater. Manuf. 2021, 4, 127–144. [Google Scholar] [CrossRef]
- Rouniyar, A.K.; Shandilya, P. Effect of machining parameters on surface roughness and white layer during magnetic field assisted powder mixed EDM of AA6061. Int. J. Mater. Prod. Technol. 2022, 64, 121–139. [Google Scholar] [CrossRef]
- Singh, M.A.; Joshi, K.; Hanzel, O.; Singh, R.K.; Šajgalík, P.; Marla, D. Identification of wire electrical discharge machinability of SiC sintered using rapid hot pressing technique. Ceram. Int. 2020, 46, 17261–17271. [Google Scholar] [CrossRef]
- George, J.; Chandan, R.; Manu, R.; Mathew, J. Experimental investigation of silicon powder mixed EDM using graphene and CNT nano particle coated electrodes. Silicon 2021, 13, 3835–3851. [Google Scholar] [CrossRef]
- Vora, J.; Prajapati, N.; Patel, S.; Sheth, S.; Patel, A.; Khanna, S.; Ayesta, I.; Lacalle, L.; Chaudhari, R. Multi-response Optimization and Effect of Alumina Mixed with Dielectric Fluid on WEDM Process of Ti6Al4V. In Recent Advances in Mechanical Infrastructure; Springer: Berlin/Heidelberg, Germany, 2022; pp. 277–287. [Google Scholar]
- Nguyen, H.-P.; Ngo, N.-V.; Nguyen, Q.T. Optimizing process parameters in edm using low frequency vibration for material removal rate and surface roughness. J. King Saud Univ.-Eng. Sci. 2021, 33, 284–291. [Google Scholar] [CrossRef]
- Chaudhari, R.; Shah, Y.; Khanna, S.; Patel, V.K.; Vora, J.; Pimenov, D.Y.; Giasin, K. Experimental Investigations and Effect of Nano-Powder-Mixed EDM Variables on Performance Measures of Nitinol SMA. Materials 2022, 15, 7392. [Google Scholar] [CrossRef] [PubMed]
- Yazdanfar, A.; Shahrajabian, H. Experimental investigation of multi-wall carbon nanotube added epoxy resin on the EDM performance of epoxy/carbon fiber/MWCNT hybrid composites. Int. J. Adv. Manuf. Technol. 2021, 116, 1801–1817. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A.; Dixit, A.R.; Das, A.K.; Kumar, S.; Ranjan, R. Comparison in the performance of EDM and NPMEDM using Al2O3 nanopowder as an impurity in DI water dielectric. Int. J. Adv. Manuf. Technol. 2019, 100, 1327–1339. [Google Scholar] [CrossRef]
- Al-Amin, M.; Abdul Rani, A.M.; Abdu Aliyu, A.A.; Abdul Razak, M.A.H.; Hastuty, S.; Bryant, M.G. Powder mixed-EDM for potential biomedical applications: A critical review. Mater. Manuf. Process. 2020, 35, 1789–1811. [Google Scholar] [CrossRef]
- Chaudhari, R.; Sheth, M.; Patel, H.; Fuse, K.; Ayesta, I.; Lacalle, L.; Vora, J. Multi-response Optimization of Alumina Powder-Mixed WEDM Process Using Taguchi-TOPSIS Approach of Nitinol SMA. In Recent Advances in Mechanical Infrastructure; Springer: Berlin/Heidelberg, Germany, 2022; pp. 359–367. [Google Scholar]
- Khan, A.A.; Ndaliman, M.B.; Zain, Z.M.; Jamaludin, M.F.; Patthi, U. Surface modification using electric discharge machining (EDM) with powder addition. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2012; pp. 725–733. [Google Scholar]
Element | Ni | Cr | Co | Mo | Ti | Al | Fe | Si | C | Zr | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|
Wt% | 58.97 | 20.94 | 13.09 | 5.74 | 2.79 | 1.24 | 0.78 | 0.066 | 0.062 | 0.058 | 0.03 |
Process Parameter | Levels/Values |
---|---|
Pulse-on time, Ton | 25; 50; 75 |
Pulse-off time, Toff | 7; 14; 21 |
Discharge current | 2; 4; 6 |
Nano-Powder | MWCNT |
Nano powder-size (nm) | 10–20 |
Exp. No. | Current (A) | Toff (µs) | Ton (µs) | MRR (g/min) | SR (µm) | RLT (µm) |
---|---|---|---|---|---|---|
1 | 4 | 15 | 50 | 1.8959 | 4.82 | 13.02 |
2 | 6 | 15 | 25 | 2.3941 | 4.75 | 16.00 |
3 | 2 | 15 | 75 | 1.8669 | 5.82 | 12.50 |
4 | 4 | 5 | 75 | 2.1421 | 6.34 | 14.32 |
5 | 6 | 15 | 75 | 2.5227 | 6.40 | 16.85 |
6 | 2 | 5 | 50 | 1.7393 | 5.38 | 11.65 |
7 | 2 | 25 | 50 | 1.4926 | 4.09 | 12.80 |
8 | 6 | 25 | 50 | 2.3125 | 5.57 | 15.47 |
9 | 4 | 25 | 25 | 1.7543 | 3.80 | 12.20 |
10 | 2 | 15 | 25 | 1.6455 | 4.18 | 11.02 |
11 | 6 | 5 | 50 | 2.4918 | 5.44 | 16.70 |
12 | 4 | 15 | 50 | 1.8727 | 4.75 | 12.45 |
13 | 4 | 15 | 50 | 1.9018 | 4.69 | 12.72 |
14 | 4 | 5 | 25 | 2.1803 | 4.42 | 14.62 |
16 | 4 | 25 | 75 | 2.1881 | 5.88 | 16.97 |
Source | DoF | SS | MS | F | P | Significance |
---|---|---|---|---|---|---|
Model | 7 | 1.4034 | 0.2004 | 179.56 | 0.000 | # |
Linear | 3 | 1.2582 | 0.4194 | 375.65 | 0.000 | # |
Current | 1 | 1.1075 | 1.1075 | 991.98 | 0.000 | # |
Toff | 1 | 0.0812 | 0.0812 | 72.72 | 0.000 | # |
Ton | 1 | 0.0695 | 0.0695 | 62.24 | 0.000 | # |
Square | 3 | 0.0894 | 0.0298 | 26.70 | 0.000 | # |
Current × Current | 1 | 0.0236 | 0.0236 | 21.17 | 0.002 | # |
Toff × Toff | 1 | 0.0055 | 0.0055 | 5.00 | 0.060 | * |
Ton × Ton | 1 | 0.0694 | 0.0694 | 62.21 | 0.000 | # |
2-Way Interaction | 1 | 0.0557 | 0.0557 | 49.91 | 0.000 | # |
Toff × Ton | 1 | 0.0557 | 0.0557 | 49.91 | 0.000 | # |
Error | 7 | 0.0078 | 0.0011 | # | ||
Lack of fit | 5 | 0.0073 | 0.0014 | 6.17000 | 0.14500 | * |
Pure error | 2 | 0.0004 | 0.0002 | |||
Total | 14 | 0.5010 |
Source | DoF | SS | MS | F | P | Significance |
---|---|---|---|---|---|---|
Model | 6 | 9.1406 | 1.5234 | 92.11 | 0.000 | # |
Linear | 3 | 8.1674 | 2.7224 | 164.61 | 0.000 | # |
Current | 1 | 0.8971 | 0.8971 | 54.24 | 0.000 | # |
Toff | 1 | 0.6336 | 0.6336 | 38.31 | 0.000 | # |
Ton | 1 | 6.6366 | 6.6366 | 401.28 | 0.000 | # |
Square | 2 | 0.4655 | 0.2328 | 14.08 | 0.002 | # |
Current × Current | 1 | 0.2608 | 0.2608 | 15.77 | 0.004 | # |
Ton × Ton | 1 | 0.2379 | 0.2379 | 14.39 | 0.005 | # |
2-Way Interaction | 1 | 0.5076 | 0.5076 | 30.69 | 0.001 | # |
Current × Toff | 1 | 0.5076 | 0.5076 | 30.69 | 0.001 | # |
Error | 8 | 0.1323 | 0.0165 | |||
Lack of fit | 6 | 0.1232 | 0.0205 | 4.52 | 0.192 | * |
Pure error | 2 | 0.0090 | 0.0045 | |||
Total | 14 | 9.2729 | ||||
Model | 6 | 9.1406 | 1.5234 | 92.11 | 0.000 | # |
Source | DoF | SS | MS | F | P | Significance |
---|---|---|---|---|---|---|
Model | 8 | 56.0144 | 7.0018 | 35.84 | 0.000 | # |
Linear | 3 | 42.1206 | 14.0402 | 71.87 | 0.000 | # |
Current | 1 | 36.3378 | 36.3378 | 186.01 | 0.000 | # |
Toff | 1 | 0.0028 | 0.0028 | 0.01 | 0.908 | * |
Ton | 1 | 5.7800 | 5.7800 | 29.59 | 0.002 | # |
Square | 3 | 6.0447 | 2.0149 | 10.31 | 0.009 | # |
Current × Current | 1 | 0.8964 | 0.8964 | 4.59 | 0.076 | * |
Toff × Toff | 1 | 3.1949 | 3.1949 | 16.35 | 0.007 | # |
Ton × Ton | 1 | 2.7800 | 2.7800 | 14.23 | 0.009 | # |
2-Way Interaction | 2 | 7.4891 | 3.9245 | 20.09 | 0.002 | # |
Current × Toff | 1 | 1.4102 | 1.4102 | 7.22 | 0.036 | # |
Toff × Ton | 1 | 6.4389 | 6.4389 | 32.96 | 0.001 | # |
Error | 6 | 1.1720 | 0.1954 | |||
Lack of fit | 4 | 1.0067 | 0.2517 | 3.04 | 0.262 | * |
Pure error | 2 | 0.1654 | 0.0827 | |||
Total | 14 | 57.1865 |
Objective Function | Design Variables | Objective Function | ||||
---|---|---|---|---|---|---|
Current | Ton | Toff | MRR | SR | RLT | |
Maximum MRR | 6 | 25 | 5 | 2.6433 | 4.68 | 18.14 |
Minimum SR | 2 | 25 | 25 | 1.4617 | 3.45 | 11.38 |
Minimum RLT | 2 | 38 | 15 | 1.5841 | 4.36 | 10.88 |
Condition | WEDM Variables | Response Variables |
---|---|---|
Conventional WEDM (Without MWCNT amount) | Current = 4 A Toff = 11 µs Ton = 31 µs MWCNT = 0 g/L | MRR = 1.9801 g/min SR = 4.38 µm RLT = 13.11 µm |
MWCNTs mixed WEDM (Addition of MWCNTs at 1 g/L) | Current = 4 A Toff = 11 µs Ton = 31 µs MWCNT = 1 g/L | MRR = 3.2811 g/min SR = 2.16 µm RLT = 7.74 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhari, R.; Ayesta, I.; Doshi, M.; Khanna, S.; Patel, V.K.; Vora, J.; López de Lacalle, L.N. Implementation of Passing Vehicle Search Algorithm for Optimization of WEDM Process of Nickel-Based Superalloy Waspaloy. Nanomaterials 2022, 12, 4394. https://doi.org/10.3390/nano12244394
Chaudhari R, Ayesta I, Doshi M, Khanna S, Patel VK, Vora J, López de Lacalle LN. Implementation of Passing Vehicle Search Algorithm for Optimization of WEDM Process of Nickel-Based Superalloy Waspaloy. Nanomaterials. 2022; 12(24):4394. https://doi.org/10.3390/nano12244394
Chicago/Turabian StyleChaudhari, Rakesh, Izaro Ayesta, Mikesh Doshi, Sakshum Khanna, Vivek K. Patel, Jay Vora, and Luis Norberto López de Lacalle. 2022. "Implementation of Passing Vehicle Search Algorithm for Optimization of WEDM Process of Nickel-Based Superalloy Waspaloy" Nanomaterials 12, no. 24: 4394. https://doi.org/10.3390/nano12244394
APA StyleChaudhari, R., Ayesta, I., Doshi, M., Khanna, S., Patel, V. K., Vora, J., & López de Lacalle, L. N. (2022). Implementation of Passing Vehicle Search Algorithm for Optimization of WEDM Process of Nickel-Based Superalloy Waspaloy. Nanomaterials, 12(24), 4394. https://doi.org/10.3390/nano12244394