High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Topography Analysis
3.2. Optical Characterization Analysis
3.3. Reliability
3.4. Visible-Light Communication (VLC)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Lin, C.-H.; Hyun, B.-R.; Sher, C.-W.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.-H.; Kuo, H.-C.; et al. Micro-Light-Emitting Diodes with Quantum Dots in Display Technology. Light Sci. Appl. 2020, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulović, V. Emergence of Colloidal Quantum-Dot Light-Emitting Technologies. Nat. Photonics 2013, 7, 13–23. [Google Scholar] [CrossRef]
- Zhu, R.; Luo, Z.; Chen, H.; Dong, Y.; Wu, S.-T. Realizing Rec. 2020 color gamut with quantum dot displays. Opt. Express 2015, 23, 23680–23693. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2017, 13, 10–14. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, X.; Yang, X.; Zheng, X.; Huang, W.; Shangguan, Z.; Wang, Y.; Kuo, H.-C.; Wu, T.; Chen, Z. Remarkable Black-Phase Robustness of CsPbI3 Nanocrystals Sealed in Solid SiO2/AlOx Sub-Micron Particles. Small 2021, 17, 2103510. [Google Scholar] [CrossRef]
- Wu, T.-H.; Sharma, G.D.; Chen, F.-C. Surface-Passivated Single-Crystal Micro-Plates for Efficient Perovskite Solar Cells. Processes 2022, 10, 1477. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Sharma, G.D.; Chen, F.-C. p-doping the interfacial layers with tetrakis (pentafluorophenyl) borate improves the power conversion efficiencies in single-crystal perovskite solar cells. Surf. Interfaces 2022, 30, 101858. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Liu, S.; Li, M.; Wen, X.; Lee, J.; Lin, S.; Li, M.-Y.; Lu, H. High performance hybrid MXene nanosheet/CsPbBr3 quantum dot photodetectors with an excellent stability. J. Alloy. Compd. 2022, 895, 162570. [Google Scholar] [CrossRef]
- Zhan, W.; Meng, L.; Shao, C.; Wu, X.-g.; Shi, K.; Zhong, H. In Situ Patterning Perovskite Quantum Dots by Direct Laser Writing Fabrication. ACS Photonics 2021, 8, 765–770. [Google Scholar] [CrossRef]
- Shu, M.; Zhang, Z.; Dong, Z.; Xu, J. CsPbBr3 Perovskite Quantum Dots Anchored on Multiwalled Carbon Nanotube For Efficient CO2 Photoreduction. Carbon 2021, 182, 454–462. [Google Scholar] [CrossRef]
- Wang, A.; Muhammad, F.; Liu, Y.; Deng, Z. Lead-Free Mn-Doped Antimony Halide Perovskite Quantum Dots with Bright Deep-Red Emission. Chem. Commun. 2021, 57, 2677–2680. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-Y.; Wu, Y.-C.; Cheng, C.-H.; Wang, W.-C.; Wang, H.-Y.; Chen, L.-Y.; Kuo, H.-C.; Lin, G.-R. Color-Converting Violet Laser Diode with an Ultrafast BEHP-PPV + MEH-PPV Polymer Blend for High-Speed White Lighting Data Link. ACS Appl. Electron. Mater. 2020, 2, 3017–3027. [Google Scholar] [CrossRef]
- Wu, T.; Lin, Y.; Huang, Y.-M.; Liu, M.; Singh, K.J.; Lin, W.; Lu, T.; Zheng, X.; Zhou, J.; Kuo, H.-C.; et al. Highly Stable Full-Color Display Device with VLC Application Potential Using Semipolar μLEDs and All-Inorganic Encapsulated Perovskite Nanocrystal. Photonics Res. 2021, 9, 2132–2143. [Google Scholar] [CrossRef]
- Singh, K.J.; Fan, X.; Sadhu, A.S.; Lin, C.-H.; Liou, F.-J.; Wu, T.; Lu, Y.-J.; He, J.-H.; Chen, Z.; Wu, T.; et al. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication. Photonics Res. 2021, 9, 2341–2350. [Google Scholar] [CrossRef]
- Ning, Z.; Gong, X.; Comin, R.; Walters, G.; Fan, F.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E.H. Quantum-Dot-In-Perovskite Solids. Nature 2015, 523, 324–328. [Google Scholar] [CrossRef]
- Chouhan, L. An Investigation of Single-Particle Photoluminescence Blinking in Halide Perovskite Nanocrystals and Quantum Dots. Ph.D. Thesis, Hokkaido University, Sapporo, Japan, 2021. [Google Scholar]
- Bi, C.; Kershaw, S.V.; Rogach, A.L.; Tian, J. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 2019, 29, 1902446. [Google Scholar] [CrossRef]
- Zhou, S. Rapid separation and purification of lead halide perovskite quantum dots through differential centrifugation in nonpolar solvent. RSC Adv. 2021, 11, 28410–28419. [Google Scholar] [CrossRef]
- Liu, Z.; Hyun, B.-R.; Sheng, Y.; Lin, C.-J.; Changhu, M.; Lin, Y.; Ho, C.-H.; He, J.-H.; Kuo, H.-C. Micro-Light-Emitting Diodes Based on InGaN Materials with Quantum Dots. Adv. Mater. Technol. 2022, 7, 2101189. [Google Scholar] [CrossRef]
- Wen, Z.; Xie, F.; Choy, W.C. Stability of Electroluminescent Perovskite Quantum Dots Light-Emitting Diode. Nano Sel. 2022, 3, 505–530. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Gu, Y.; Li, Y.; Li, Y.; Shen, H.; Zhang, Z.; Ma, Y. Progress of Metal Halide Perovskite Crystals From a Crystal Growth Point of View. Cryst. Res. Technol. 2022, 2200128. [Google Scholar] [CrossRef]
- Bhosale, S.S.; Jokar, E.; Chiang, Y.-T.; Kuan, C.-H.; Khodakarami, K.; Hosseini, Z.; Chen, F.-C.; Diau, E.W.-G. Mn-Doped Organic–Inorganic Perovskite Nanocrystals for a Flexible Luminescent Solar Concentrator. ACS Appl. Energy Mater. 2021, 4, 10565–10573. [Google Scholar] [CrossRef]
- Huang, S.-K.; Weng, S.-Y.; Lee, G.-Y.; Huang, Y.-M.; Kuo, H.-C.; Lin, C.-C. An Investigation on High-Resolution Color Conversion Layer Based on Colloidal Quantum Dots. In Proceedings of the CLEO: Applications and Technology, San Jose, CA, USA, 15–20 May 2022; p. JW3B.182. [Google Scholar]
- Hyun, B.-R.; Sher, C.-W.; Chang, Y.-W.; Lin, Y.; Liu, Z.; Kuo, H.-C. Dual Role of Quantum Dots as Color Conversion Layer and Suppression of Input Light for Full-Color Micro-LED Displays. J. Phys. Chem. Lett. 2021, 12, 6946–6954. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Chu, K.-H.; Sher, C.-W.; Lin, C.-L.; Su, Y.-K.; Sun, C.-W.; Kuo, H.-C. High Stability of Liquid-Typed White Light-Emitting Diode with Zn0.8Cd0.2S White Quantum Dots. Coatings 2021, 11, 415. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Chung, S.-R. High Stability of Perovskite CsPbBr3 Quantum Dots-Based White Light-Emitting Diodes. In Proceedings of the Physical Chemistry of Semiconductor Materials and Interfaces XIX, Online, 24 August–4 September 2020; pp. 8–17. [Google Scholar]
- Lin, C.-H.; Kang, C.-Y.; Verma, A.; Wu, T.; Pai, Y.-M.; Chen, T.-Y.; Tsai, C.-L.; Yang, Y.-Z.; Sharma, S.; Sher, C.-W.; et al. Ultrawide Color Gamut Perovskite and CdSe/ZnS Quantum-Dots-Based White Light-Emitting Diode with High Luminous Efficiency. Nanomaterials 2019, 9, 1314. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Verma, A.; Kang, C.-Y.; Pai, Y.-M.; Chen, T.-Y.; Yang, J.-J.; Sher, C.-W.; Yang, Y.-Z.; Lee, P.-T.; Lin, C.-C.; et al. Hybrid-Type White LEDs Based on Inorganic Halide Perovskite QDs: Candidates for Wide Color Gamut Display Backlights. Photonics Res. 2019, 7, 579–585. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Huang, Y.-M.; Huang, C.-P.; Lee, T.-Y.; Cho, Y.-Y.; Liu, Y.-H.; Manikandan, A.; Chueh, Y.-L.; Chen, T.-M.; Kuo, H.-C.; et al. Improved Long-Term Reliability of a Silica-Encapsulated Perovskite Quantum-Dot Light-Emitting Device with an Optically Pumped Remote Film Package. ACS Omega 2021, 6, 2836–2845. [Google Scholar] [CrossRef]
- Tang, X.; Chen, W.; Liu, Z.; Du, J.; Yao, Z.; Huang, Y.; Chen, C.; Yang, Z.; Shi, T.; Hu, W.; et al. Ultrathin, Core–Shell Structured SiO2 Coated Mn2+-Doped Perovskite Quantum Dots for Bright White Light-Emitting Diodes. Small 2019, 15, 1900484. [Google Scholar] [CrossRef]
- Park, D.H.; Han, J.S.; Kim, W.; Jang, H.S. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dye. Pigment. 2018, 149, 246–252. [Google Scholar] [CrossRef]
- Xuan, T.; Huang, J.; Liu, H.; Lou, S.; Cao, L.; Gan, W.; Liu, R.-S.; Wang, J. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes. Chem. Mater. 2019, 31, 1042–1047. [Google Scholar] [CrossRef]
- Geng, S.; Wen, Y.; Zhou, B.; Wang, Z.; Wang, Z.; Wang, P.; Jing, Y.; Cao, K.; Wang, K.; Chen, R. High Luminance and Stability of Perovskite Quantum Dot Light-Emitting Diodes via ZnBr2 Passivation and an Ultrathin Al2O3 Barrier with Improved Carrier Balance and Ion Diffusive Inhibition. ACS Appl. Electron. Mater. 2021, 3, 2362–2371. [Google Scholar] [CrossRef]
- Yun, H.-S.; Noh, K.; Kim, J.; Noh, S.H.; Kim, G.-H.; Lee, W.; Na, H.B.; Yoon, T.-S.; Jang, J.; Kim, Y.; et al. CsPbBr3 Perovskite Quantum Dot Light-Emitting Diodes Using Atomic Layer Deposited Al2O3 and ZnO Interlayers. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2020, 14, 1900573. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P.M.; et al. In Situ Synthesis of Lead-Free Halide Perovskite–COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. ACS Mater. Lett. 2022, 4, 464–471. [Google Scholar] [CrossRef]
- Cha, J.-H.; Noh, K.; Yin, W.; Lee, Y.; Park, Y.; Ahn, T.K.; Mayoral, A.; Kim, J.; Jung, D.-Y.; Terasaki, O. Formation and Encapsulation of All-Inorganic Lead Halide Perovskites at Room Temperature in Metal–Organic Frameworks. J. Phys. Chem. Lett. 2019, 10, 2270–2277. [Google Scholar] [CrossRef]
- Pathiraja Mudalige Dona, S.T. Optimisation of Alumina Coating by Atomic Layer Deposition (ALD) Process as a Protective Scheme for CsPbBr3 Perovskite Quantum Dots. Master’s Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2018. [Google Scholar]
- Lei, L.; Huang, D.; Chen, S.; Zhang, C.; Chen, Y.; Deng, R. Metal Chalcogenide/Oxide-Based Quantum Dots Decorated Functional Materials for Energy-Related Applications: Synthesis and Preservation. Coord. Chem. Rev. 2021, 429, 213715. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Ahmed, T.; Liu, A.-C.; Chen, S.-W.H.; Liang, K.-L.; Liou, Y.-H.; Ting, C.-C.; Kuo, W.-H.; Fang, Y.-H.; Lin, C.-C.; et al. High-Stability Quantum Dot-Converted 3-in-1 Full-Color Mini-Light-Emitting Diodes Passivated with Low-Temperature Atomic Layer Deposition. IEEE Trans. Electron Devices 2021, 68, 597–601. [Google Scholar] [CrossRef]
- Sung, C.-H.; Huang, S.-D.; Kumar, G.; Lin, W.-C.; Lin, C.-C.; Kuo, H.-C.; Chen, F.-C. Highly Luminescent Perovskite Quantum Dots for Light-Emitting Devices: Photopatternable Perovskite Quantum Dot–Polymer Nanocomposites. J. Mater. Chem. C 2022, 10, 15941–15947. [Google Scholar] [CrossRef]
- Zu, Y.; Xi, J.; Li, L.; Dai, J.; Wang, S.; Yun, F.; Jiao, B.; Dong, H.; Hou, X.; Wu, Z. High-Brightness and Color-Tunable FAPbBr3 Perovskite Nanocrystals 2.0 Enable Ultrapure Green Luminescence for Achieving Recommendation 2020 Displays. ACS Appl. Mater. Interfaces 2019, 12, 2835–2841. [Google Scholar] [CrossRef]
- Di Stasio, F.; Ramiro, I.; Bi, Y.; Christodoulou, S.; Stavrinadis, A.; Konstantatos, G. High-Efficiency Light-Emitting Diodes Based on Formamidinium Lead Bromide Nanocrystals and Solution Processed Transport Layers. Chem. Mater. 2018, 30, 6231–6235. [Google Scholar] [CrossRef]
- Di Stasio, F.; Christodoulou, S.; Huo, N.; Konstantatos, G. Near-Unity Photoluminescence Quantum Yield in CsPbBr3 Nanocrystal Solid-State Films via Postsynthesis Treatment with Lead Bromide. Chem. Mater. 2017, 29, 7663–7667. [Google Scholar] [CrossRef]
- Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D.T.; Buonsanti, R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem. Int. Ed. 2017, 56, 10696–10701. [Google Scholar] [CrossRef]
- Crisp, R.W.; Hashemi, F.S.M.; Alkemade, J.; Kirkwood, N.; Grimaldi, G.; Kinge, S.; Siebbeles, L.D.A.; van Ommen, J.R.; Houtepen, A.J. Atomic layer deposition of ZnO on InP quantum dot films for charge separation, stabilization, and solar cell formation. Adv. Mater. Interfaces 2020, 7, 1901600. [Google Scholar] [CrossRef]
- Brennan, T.P.; Ardalan, P.; Lee, H.-B.-R.; Bakke, J.R.; Ding, I.-K.; McGehee, M.D.; Bent, S.F. Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells. Adv. Energy Mater. 2011, 1, 1169–1175. [Google Scholar] [CrossRef]
- Park, S.; Kim, B.J.; Kim, T.Y.; Jung, E.Y.; Lee, K.-M.; Hong, J.-A.; Jeon, W.; Park, Y.; Kang, S.J. Improving the Photodetection and Stability of a Visible-Light QDs/ZnO Phototransistor via an Al2O3 Additional Layer. J. Mater. Chem. C 2021, 9, 2550–2560. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, J.; Lin, J.; Hu, X.; Wang, C.; Chen, E.; Sun, J.; Yan, Q.; Guo, T. Quantum-Dot Array with a Random Rough Interface Encapsulated by Atomic Layer Deposition. Opt. Lett. 2022, 47, 166–169. [Google Scholar] [CrossRef]
- Wang, H.-C.; Bao, Z.; Tsai, H.-Y.; Tang, A.-C.; Liu, R.-S. Perovskite Quantum Dots and Their Application in Light-Emitting Diodes. Small 2018, 14, 1702433. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, R.; Li, F.; Xie, H.; He, P.; Sha, Q.; Tang, Z.; Wang, N.; Zhong, H. One-Step Polymeric Melt Encapsulation Method to Prepare CsPbBr3 Perovskite Quantum Dots/Polymethyl Methacrylate Composite with High Performance. Adv. Funct. Mater. 2021, 31, 2010009. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiu, W.; Sun, Y.; Zhu, D.; Zhang, Q.; Yuwen, L.; Weng, L.; Teng, Z.; Wang, L. RGD-QD-MoS2 nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. Nanoscale 2017, 9, 15835–15845. [Google Scholar] [CrossRef]
- Shim, J.-I.; Shin, D.-S.; Oh, C.-H.; Jung, H. Active Efficiency as a Key Parameter for Understanding the Efficiency Droop in InGaN-Based Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 2019, 9, 015013. [Google Scholar] [CrossRef]
- Zeferino, R.S.; Flores, M.B.; Pal, U. Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J. Appl. Phys. 2011, 109, 014308. [Google Scholar] [CrossRef]
- Li, J.-S.; Tang, Y.; Li, Z.-T.; Li, J.-X.; Ding, X.-R.; Yu, B.-H.; Yu, S.-D.; Ou, J.-Z.; Kuo, H.-C. Toward 200 lumens per watt of quantum-dot white-light-emitting diodes by reducing reabsorption loss. ACS Nano 2020, 15, 550–562. [Google Scholar] [CrossRef]
- Mei, S.; Liu, X.; Zhang, W.; Liu, R.; Zheng, L.; Guo, R.; Tian, P. High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. ACS Appl. Mater. Interfaces 2018, 10, 5641–5648. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.-Y.; Hsieh, T.-H.; Miao, W.-C.; James Singh, K.; Li, Y.; Tu, C.-C.; Chen, F.-C.; Lu, W.-C.; Kuo, H.-C. High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications. Nanomaterials 2022, 12, 4140. https://doi.org/10.3390/nano12234140
Lee T-Y, Hsieh T-H, Miao W-C, James Singh K, Li Y, Tu C-C, Chen F-C, Lu W-C, Kuo H-C. High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications. Nanomaterials. 2022; 12(23):4140. https://doi.org/10.3390/nano12234140
Chicago/Turabian StyleLee, Tzu-Yi, Tsau-Hua Hsieh, Wen-Chien Miao, Konthoujam James Singh, Yiming Li, Chang-Ching Tu, Fang-Chung Chen, Wen-Chung Lu, and Hao-Chung Kuo. 2022. "High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications" Nanomaterials 12, no. 23: 4140. https://doi.org/10.3390/nano12234140
APA StyleLee, T.-Y., Hsieh, T.-H., Miao, W.-C., James Singh, K., Li, Y., Tu, C.-C., Chen, F.-C., Lu, W.-C., & Kuo, H.-C. (2022). High-Reliability Perovskite Quantum Dots Using Atomic Layer Deposition Passivation for Novel Photonic Applications. Nanomaterials, 12(23), 4140. https://doi.org/10.3390/nano12234140