Analysis of Formation Mechanisms of Sugar-Derived Dense Carbons via Hydrogel Carbonization Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sugar–Polyacrylamide
2.3. Characterization Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, M.; Liu, Y.; Xiao, Y.; Zhu, Y.; Guan, Q.; Yuan, D.; Zhang, J. An easy catalyst-free hydrothermal method to prepare monodisperse carbon microspheres on a large scale. J. Phys. Chem. C 2009, 113, 8455–8459. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.-Y.; Li, J.; Zou, Y.-L.; Tang, J.-J. Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater. Chem. Phys. 2012, 135, 445–450. [Google Scholar] [CrossRef]
- Siddiqui, M.T.H.; Nizamuddin, S.; Baloch, H.A.; Mubarak, N.M.; Dumbre, D.K.; Inamuddin; Asiri, A.M.; Bhutto, A.W.; Srinivasan, M.; Griffin, G.J. Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environ. Chem. Lett. 2018, 16, 821–844. [Google Scholar] [CrossRef]
- Simsir, H.; Eltugral, N.; Karagoz, S. Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Bioresour. Technol. 2017, 246, 82–87. [Google Scholar] [CrossRef]
- Wazir, A.H.; Kakakhel, L. Preparation and characterization of pitch-based carbon fibers. New Carbon Mater. 2009, 24, 83–88. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, C.; Chen, M.-m.; Li, M. Hard carbon derived from coal tar pitch for use as the anode material in lithium ion batteries. Int. J. Electrochem. Sci. 2013, 8, 2702–2709. [Google Scholar]
- Zhou, P.; Chen, Q.-L. Preparation and characterization of carbon foam derived from coal pitch. J. Anal. Appl. Pyrolysis 2016, 122, 370–376. [Google Scholar] [CrossRef]
- Farhan, S.; Wang, R.-M.; Jiang, H.; Ul-Haq, N. Preparation and characterization of carbon foam derived from pitch and phenolic resin using a soft templating method. J. Anal. Appl. Pyrolysis 2014, 110, 229–234. [Google Scholar] [CrossRef]
- Luz, A.P.; Renda, C.G.; Lucas, A.A.; Bertholdo, R.; Aneziris, C.G.; Pandolfelli, V.C. Graphitization of phenolic resins for carbon-based refractories. Ceram. Int. 2017, 43, 8171–8182. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. A Eur. J. 2009, 15, 4195–4203. [Google Scholar] [CrossRef]
- Fellinger, T.-P.; White, R.J.; Titirici, M.-M.; Antonietti, M. Borax-mediated formation of carbon aerogels from glucose. Adv. Funct. Mater. 2012, 22, 3254–3260. [Google Scholar] [CrossRef]
- Kabyemela, B.M.; Adschiri, T.; Malaluan, R.M.; Arai, K. Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind. Eng. Chem. Res. 1999, 38, 2888–2895. [Google Scholar] [CrossRef]
- Wei, L.; Sevilla, M.; Fuertes, A.B.; Mokaya, R.; Yushin, G. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv. Energy Mater. 2011, 1, 356–361. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Zhang, M.; Qi, L.; Qi, Y.Y. Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization. RSC Adv. 2016, 6, 20814–20823. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, X.; Liu, J.; Wang, H.; Zhang, Y.; Gao, J.; Lu, Q.; Zhou, H. Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. Electrochim. Acta 2015, 154, 110–118. [Google Scholar] [CrossRef]
- Tsubaki, S.; Onda, A.; Yanagisawa, K.; Azuma, J. Microwave-assisted hydrothermal hydrolysis of maltose with addition of microwave absorbing agents. Procedia Chem. 2012, 4, 288–293. [Google Scholar] [CrossRef]
- Xiao, P.-W.; Zhao, L.; Sui, Z.-Y.; Xu, M.-Y.; Han, B.-H. Direct synthesis of ordered mesoporous hydrothermal carbon materials via a modified soft-templating method. Microporous Mesoporous Mater. 2017, 253, 215–222. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Zhang, H.; Shao, L.-M.; Lü, F.; He, P.-J. Preparation and application of hierarchical porous carbon materials from waste and biomass: A review. Waste Biomass Valorizat. 2021, 12, 1699–1724. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Chen, L.; Huang, X. Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001, 39, 2211–2214. [Google Scholar] [CrossRef]
- Ansi, V.A.; Sreelakshmi, P.; Poovathinthodiyil, R.; Renuka, N.K. Table sugar derived carbon dot—A promising green reducing agent. Mater. Res. Bull. 2021, 139, 111284. [Google Scholar]
- Krebsz, M.; Pasinszki, T.; Tung, T.T.; Nine, M.J.; Losic, D. Multiple applications of bio-graphene foam for efficient chromate ion removal and oil-water separation. Chemosphere 2021, 263, 127790. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Chen, D.; Cheng, Y.; Fei, W.; Jiang, D.; Tang, S.; Zhao, G.; Song, J.; Hou, C.; Zhang, W.; et al. Sugar-derived isotropic nanoscale polycrystalline graphite capable of considerable plastic deformation. Adv. Mater. 2022, 34, 2200363. [Google Scholar] [CrossRef]
- Tan, M.; Chen, D.; Cheng, Y.; Sun, H.; Chen, G.; Dong, S.; Zhao, G.; Sun, B.; Wu, S.; Zhang, W.; et al. Anisotropically oriented carbon films with dual-function of efficient heat dissipation and excellent electromagnetic interference shielding performances. Adv. Funct. Mater. 2022, 32, 2202057. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, D.; Cheng, Y.; Sun, B.; Zhao, G.; Fei, W.; Han, W.; Han, J.; Zhang, X. Eco-friendly and sustainable approach of assembling sugars into biobased carbon fibers. Green Chem. 2022, 24, 5097–5106. [Google Scholar] [CrossRef]
- Wu, S.; Chen, D.; Zhao, G.; Cheng, Y.; Sun, B.; Yan, X.; Han, W.; Chen, G.; Zhang, X. Controllable synthesis of a robust sucrose-derived bio-carbon foam with 3D hierarchical porous structure for thermal insulation, flame retardancy and oil absorption. Chem. Eng. J. 2022, 434, 134514. [Google Scholar] [CrossRef]
- Dutta, A.; Maity, S.; Das, R.K. A highly stretchable, tough, self-healing, and thermoprocessable polyacrylamide–chitosan supramolecular hydrogel. Macromol. Mater. Eng. 2018, 303, 1800322. [Google Scholar] [CrossRef]
- Örsi, F. Kinetic studies on the thermal decomposition of glucose and fructose. J. Therm. Anal. 1973, 5, 329–335. [Google Scholar] [CrossRef]
- Yao, C.; Shin, Y.; Wang, L.Q.; Windisch, C.F.; Samuels, W.D.; Arey, B.W.; Wang, C.; Risen, W.M.; Exarhos, G.J. Hydrothermal dehydration of aqueous fructose solutions in a closed system. J. Phys. Chem. C 2007, 111, 15141–15145. [Google Scholar] [CrossRef]
- Patwardhan, P.R.; Satrio, J.A.; Brown, R.C.; Shanks, B.H. Product distribution from fast pyrolysis of glucose-based carbohydrates. J. Anal. Appl. Pyrolysis 2009, 86, 323–330. [Google Scholar] [CrossRef]
- Lee, J.W.; Thomas, L.C.; Jerrell, J.; Feng, H.; Cadwallader, K.R.; Schmidt, S.J. Investigation of thermal decomposition as the kinetic process that causes the loss of crystalline structure in sucrose using a chemical analysis approach (Part II). J. Agric. Food Chem. 2011, 59, 702–712. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Álvarez-Salas, C.; Esneider-Alcalá, M.; Toxqui-Terán, A.; Pérez-García, S.A.; Ruiz-Cabrera, M.A. Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars. CyTA—J. Food 2012, 10, 258–267. [Google Scholar] [CrossRef]
- Murillo, J.D.; Moffet, M.; Biernacki, J.J. High-temperature molecular dynamics simulation of cellobiose and maltose. AICHE J. 2015, 61, 857–866. [Google Scholar] [CrossRef]
- Wang, C.; Dou, B.; Song, Y.; Chen, H.; Yang, M.; Xu, Y. Kinetic study on non-isothermal pyrolysis of sucrose biomass. Energy Fuels 2014, 28, 3793–3801. [Google Scholar] [CrossRef]
- Kchaou, H.; Benbettaieb, N.; Jridi, M.; Nasri, M.; Debeaufort, F. Influence of Maillard reaction and temperature on functional, structure and bioactive properties of fish gelatin films. Food Hydrocoll. 2019, 97, 105196. [Google Scholar] [CrossRef]
- Zou, W.; Yu, L.; Liu, X.; Chen, L.; Zhang, X.; Qiao, D.; Zhang, R. Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydr. Polym. 2012, 87, 1583–1588. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.-H.; Yang, H.-P.; Chen, H.-P. Characterization of products from hydrothermal treatments of cellulose. Energy 2012, 42, 457–465. [Google Scholar] [CrossRef]
- Guo, L.; Yin, X.; Wu, W.; Meng, H. Preparation of graphene via liquid-phase exfoliation with high gravity technology from edge-oxidized graphite. Colloids Surf. A Physicochem. Eng. Asp. 2017, 531, 25–31. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef]
- Lee, J.S.; Mayes, R.T.; Luo, H.; Dai, S. Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon 2010, 48, 3364–3368. [Google Scholar] [CrossRef]
- Inada, M.; Enomoto, N.; Hojo, J.; Hayashi, K. Structural analysis and capacitive properties of carbon spheres prepared by hydrothermal carbonization. Adv. Powder Technol. 2017, 28, 884–889. [Google Scholar] [CrossRef]
- Johnson, R.R.; Alford, E.D.; Kinzer, G.W. Formation of sucrose pyrolysis products. J. Agric. Food Chem. 1969, 17, 22–24. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, Z.; Wang, J.; Shi, J. Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance. J. Electroanal. Chem. 2015, 747, 20–28. [Google Scholar] [CrossRef]
Sugar–PAM | Peak 1 (°C) | Peak 2 (°C) | Peak 3 (°C) |
---|---|---|---|
Glu–PAM | 208.9 | 288.1 | |
Fru–PAM | 242.1 | ||
Mal–PAM | 139.4 | 242.9 | 298.5 |
Suc–PAM | 229.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Fan, Z.; Mao, W.; Dai, C.; Chen, D.; Zhang, X. Analysis of Formation Mechanisms of Sugar-Derived Dense Carbons via Hydrogel Carbonization Method. Nanomaterials 2022, 12, 4090. https://doi.org/10.3390/nano12224090
Chen L, Fan Z, Mao W, Dai C, Chen D, Zhang X. Analysis of Formation Mechanisms of Sugar-Derived Dense Carbons via Hydrogel Carbonization Method. Nanomaterials. 2022; 12(22):4090. https://doi.org/10.3390/nano12224090
Chicago/Turabian StyleChen, Liting, Zheqiong Fan, Weiguo Mao, Cuiying Dai, Daming Chen, and Xinghong Zhang. 2022. "Analysis of Formation Mechanisms of Sugar-Derived Dense Carbons via Hydrogel Carbonization Method" Nanomaterials 12, no. 22: 4090. https://doi.org/10.3390/nano12224090
APA StyleChen, L., Fan, Z., Mao, W., Dai, C., Chen, D., & Zhang, X. (2022). Analysis of Formation Mechanisms of Sugar-Derived Dense Carbons via Hydrogel Carbonization Method. Nanomaterials, 12(22), 4090. https://doi.org/10.3390/nano12224090