Lead-Free Bi0.5Na0.5TiO3 Ferroelectric Nanomaterials for Pyro-Catalytic Dye Pollutant Removal under Cold-Hot Alternation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of BNT
2.2. Characterization
2.3. Pyro-Catalysis Performance Test
2.4. Detection of Pyro-Catalytic Active Species
3. Results and Discussion
4. Conclusions or Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, H.; Wu, Z.; Jia, Y.; Li, W.; Zheng, R.K.; Luo, H.S. Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers. Appl. Phys. Lett. 2014, 104, 162907. [Google Scholar] [CrossRef]
- Cao, J.; Jia, Y.; Wan, X.; Li, B.; Zhang, Y.; Huang, S.; Yang, H.; Yuan, G.; Li, G.; Cui, X.; et al. Strong tribocatalysis of strontium titantate nanofibers through harvesting friction energy for dye decomposition. Ceram. Int. 2022, 48, 9651–9657. [Google Scholar] [CrossRef]
- Zheng, Y.; Jia, Y.; Li, H.; Wu, Z.; Dong, X. Enhanced piezo-electro-chemical coupling effect of BaTiO3/g-C3N4 nanocomposite for vibration-catalysis. J. Mater. Sci. 2020, 55, 14787–14797. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, L.; Luo, W.; Li, H.; Wu, Z.; Xu, Z.; Zhang, Y.; Zhang, H.; Yuan, G.; Gao, J.; et al. Strong tribo-catalysis of zinc oxide nanorods via triboelectrically-harvesting friction energy. Ceram. Int. 2020, 46, 25293–25298. [Google Scholar] [CrossRef]
- Ma, J.; Jia, Y.; Chen, L.; Zheng, Y.; Wu, Z.; Luo, W.; Jiang, M.; Cui, X.; Li, Y. Dye wastewater treatment driven by cyclically heating/ cooling the poled (K0.5Na0.5)NbO3 pyroelectric crystal catalyst. J. Clean. Prod. 2020, 276, 124218. [Google Scholar] [CrossRef]
- Chen, L.; Jia, Y.; Zhao, J.; Ma, J.; Wu, Z.; Yuan, G.; Cui, X. Strong piezoelectric-catalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition. J. Colloid Interf. Sci. 2021, 586, 758–765. [Google Scholar] [CrossRef]
- Wang, L.; Haugen, N.O.; Wu, Z.; Shu, X.; Jia, Y.; Ma, J.; Yu, S.; Li, H.; Chai, Q. Ferroelectric BaTiO3@ZnO heterostructure nanofibers with enhanced pyroelectrically-driven-catalysis. Ceram. Int. 2019, 45, 90–95. [Google Scholar] [CrossRef]
- Ma, J.; Wu, Z.; Luo, W.; Zheng, Y.; Jia, Y.; Wang, L.; Huang, H. High pyrocatalytic properties of pyroelectric BaTiO3 nanofibers loaded by noble metal under room-temperature thermal cycling. Ceram. Int. 2018, 44, 21835–21841. [Google Scholar] [CrossRef]
- Xu, X.; Jia, Y.; Xiao, L.; Wu, Z. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere 2018, 193, 1143–1148. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, T.; Ruan, L.; Guan, J.; Huang, S.; Dong, X.; Li, H.; Jia, Y. Strong tribo-catalytic nitrogen fixation of two-dimensional graphite carbon nitride through harvesting mechanical energy. Nanomaterials 2022, 12, 1981. [Google Scholar] [CrossRef]
- Yao, Y.; Jia, Y.; Zhang, Q.; Li, S.; Li, G.; Cui, X.; Wu, Z. Piezoelectric BaTiO3 with milling treatment for highly efficient piezocatalysis under vibration. J. Alloys Compd. 2022, 905, 164234. [Google Scholar] [CrossRef]
- Guan, J.; Jia, Y.; Chang, T.; Ruan, L.; Xu, T.; Zhang, Z.; Yuan, G.; Wu, Z.; Zhu, G. Highly efficient piezo-catalysis of the heat-treated cellulose nanocrystal for dye decomposition driven by ultrasonic vibration. Sep. Purif. Technol. 2022, 286, 120450. [Google Scholar] [CrossRef]
- Guan, J.; Jia, Y.; Cao, J.; Yuan, G.; Huang, S.; Cui, X.; Li, G.; Wu, Z. Enhancement of piezoelectric catalysis of Na0.5Bi0.5TiO3 with electric poling for dye decomposition. Ceram. Int. 2022, 48, 3695–3701. [Google Scholar] [CrossRef]
- Dong, X.; Cheng, F. Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J. Mater. Chem. A 2015, 3, 23642–23652. [Google Scholar] [CrossRef]
- Xu, X.; Xiao, L.; Jia, Y.; Hong, Y.; Ma, J.; Wu, Z. Strong visible light photocatalytic activity of magnetically recyclable sol–gel-synthesized ZnFe2O4 for Rhodamine B degradation. J. Electron. Mater. 2017, 47, 536–541. [Google Scholar] [CrossRef]
- Yang, W.; Chen, Y.; Gao, S.; Sang, L.; Tao, R.; Sun, C.; Shang, J.K. Post-illumination activity of Bi2WO6 in the dark from the photocatalytic "memory" effect. J. Adv. Ceramics 2021, 10, 355–367. [Google Scholar] [CrossRef]
- Chen, D.; Wang, D.; Ge, Q.; Ping, G.; Fan, M.; Qin, L.; Bai, L.; Lv, C.; Shu, K. Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin. Solid Films 2015, 574, 1–9. [Google Scholar] [CrossRef]
- Fu, J.; Tian, Y.; Chang, B.; Xi, F.; Dong, X. Facile fabrication of N-doped TiO2 nanocatalyst with superior performance under visible light irradiation. J. Solid State Chem. 2013, 199, 280–286. [Google Scholar] [CrossRef]
- You, H.; Wu, Z.; Jia, Y.; Xu, X.; Xia, Y.; Han, Z.; Wang, Y. High-efficiency and mechano-/photo-bi-catalysis of piezoelectric-ZnO@photoelectric-TiO2 core-shell nanofibers for dye decomposition. Chemosphere 2017, 183, 528–535. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Wu, Z.; Jia, Y.; Xiao, L.; Liu, Y. Strong pyro-electro-chemical coupling of Ba0.7Sr0.3TiO3@Ag pyroelectric nanoparticles for room-temperature pyrocatalysis. Nano Energy 2018, 50, 581–588. [Google Scholar] [CrossRef]
- Tang, Y.; Luo, L.; Jia, Y.; Luo, H.; Zhao, X.; Xu, H.; Lin, D.; Sun, J.; Meng, X.; Zhu, J.; et al. Mn-doped 0.71Pb(Mg1/3Nb2/3O3)-0.29PbTiO3 pyroelectric crystals for uncooled infrared focal plane arrays applications. Appl. Phys. Lett. 2006, 89, 162906. [Google Scholar] [CrossRef] [Green Version]
- You, H.; Jia, Y.; Wu, Z.; Wang, F.; Huang, H.; Wang, Y. Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. Nat. Commun. 2018, 9, 2889. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, Y.; Li, J.; Wu, C.; Yang, G. Piezoelectric, ferroelectric and pyroelectric properties of (100-x)Pb(Mg1/3Nb2/3)O3−x PbTiO3 ceramics. J. Adv. Dielectr. 2022, 12, 2250002. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, R.; Wang, F.; Feng, T.; Zhang, P.; Luo, H. Pyroelectric properties of 91.5Na0.5Bi0.5TiO3–8.5K0.5Bi0.5TiO3 lead-free single crystal. J. Adv. Dielectr. 2021, 11, 2150023. [Google Scholar] [CrossRef]
- Kaur, S.; Arora, M.; Kumar, S.; Malhi, P.S.; Singh, M.; Singh, A. Agreement in experimental and theoretically obtained electrocaloric effect in optimized Bi3+ doped PbZr0.52Ti0.48O3 material. J. Adv. Dielectr. 2022, 12, 2250003. [Google Scholar] [CrossRef]
- Najmi, F.; Shen, W.; Cremaschi, L.; Cheng, Z.-Y. Electrocaloric devices part I: Analytical solution of one-dimensional transient heat conduction in a multilayer electrocaloric system. J. Adv. Dielectr. 2020, 10, 2050028. [Google Scholar] [CrossRef]
- Najmi, F.; Shen, W.; Cremaschi, L.; Cheng, Z.-Y. Electrocaloric devices part II: All-solid heat pump without moving parts. J. Adv. Dielectr. 2020, 10, 2050029. [Google Scholar] [CrossRef]
- Xu, X.; Xiao, L.; Jia, Y.; Wu, Z.; Wang, F.; Wang, Y.; Haugen, N.O.; Huang, H. Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: Harvesting cold–hot alternation energy near room-temperature. Energ. Environ. Sci. 2018, 11, 2198–2207. [Google Scholar] [CrossRef]
- Yang, B.; Chen, H.; Yang, Y.; Wang, L.; Bian, J.; Liu, Q.; Lou, X. Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation. Chem. Eng. J. 2021, 416, 128986. [Google Scholar] [CrossRef]
- Min, M.; Liu, Y.; Song, C.; Zhao, D.; Wang, X.; Qiao, Y.; Feng, R.; Hao, W.; Tao, P.; Shang, W.; et al. Photothermally enabled pyro-catalysis of a BaTiO3 nanoparticle composite membrane at the liquid/air Interface. ACS Appl. Mater. Interfaces 2018, 10, 21246–21253. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Qiao, Y.; Min, M.; Wang, L.; Shan, H.; Ma, Y.; Hao, W.; Tao, P.; Shang, W.; et al. Pyroelectric synthesis of metal–BaTiO3 hybrid nanoparticles with enhanced pyrocatalytic performance. ACS Sustain. Chem. Eng. 2019, 7, 2602–2609. [Google Scholar] [CrossRef]
- Chen, M.; Jia, Y.; Li, H.; Wu, Z.; Huang, T.; Zhang, H. Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation. J. Adv. Ceram. 2021, 10, 338–346. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, W.; Zhang, H.; Jia, Y. Strong pyro-catalysis of shape-controllable bismuth oxychloride nanomaterial for wastewater remediation. Appl. Surf. Sci. 2020, 513, 145630. [Google Scholar] [CrossRef]
- Luo, W.; Ying, J.; Yu, S.; Yang, X.; Jia, Y.; Chen, M.; Zhang, H.; Gao, J.; Li, Y.; Mai, Y.-W.; et al. ZnS:Cu powders with strong visible-light photocatalysis and pyro-catalysis for room-temperature dye decomposition. Ceram. Int. 2020, 46, 12096–12101. [Google Scholar] [CrossRef]
- Raufeisen, S.; Neumeister, P.; Buchheim, J.R.; Stelter, M.; Braeutigam, P. Pyrocatalytic oxidation- strong size-dependent poling effect on catalytic activity of pyroelectric BaTiO3 nano- and microparticles. Phys. Chem. Chem. Phys. 2020, 22, 23464–23473. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Luo, W.; Yu, S.; Yang, X.; Wu, Z.; Zhang, H.; Gao, J.; Mai, Y.-W.; Li, Y.; Jia, Y. Synergistic effect of photocatalysis and pyrocatalysis of pyroelectric ZnSnO3 nanoparticles for dye degradation. Ceram. Int. 2020, 46, 9786–9793. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Wu, Z.; Feng, L.; Yu, S.; Zhang, H.; Gao, J.; Mai, Y.-W.; Jia, Y. Enhancement of pyroelectric catalysis of ferroelectric BaTiO3 crystal: The action mechanism of electric poling. Ceram. Int. 2020, 46, 16763–16769. [Google Scholar] [CrossRef]
- Qian, W.; Wu, Z.; Jia, Y.; Hong, Y.; Xu, X.; You, H.; Zheng, Y.; Xia, Y. Thermo-electrochemical coupling for room temperature thermocatalysis in pyroelectric ZnO nanorods. Electrochem. Commun. 2017, 81, 124–127. [Google Scholar] [CrossRef]
- Xia, Y.; Jia, Y.; Qian, W.; Xu, X.; Wu, Z.; Han, Z.; Hong, Y.; You, H.; Ismail, M.; Bai, G.; et al. Pyroelectrically induced pyro-electro-chemical catalytic activity of BaTiO3 nanofibers under room-temperature cold–hot cycle excitations. Metals 2017, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- You, H.; Wu, Z.; Wang, L.; Jia, Y.; Li, S.; Zou, J. Highly efficient pyrocatalysis of pyroelectric NaNbO3 shape-controllable nanoparticles for room-temperature dye decomposition. Chemosphere 2018, 199, 513–537. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, X.; Dong, C.; Guo, W.; Xu, Z.; Chen, Y.; Xiang, H.; Zhang, R. Engineering electronic band structure of binary thermoelectric nanocatalysts for augmented pyrocatalytic tumor nanotherapy. Adv. Mater. 2022, 34, 2106773. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Guo, J.; Meng, D.; Wu, Y.; Sun, R.; Zhao, C. Strong pyro-electro-chemical coupling of elbaite/H2O2 system for pyrocatalysis dye wastewater. Catalysts 2021, 11, 1370. [Google Scholar] [CrossRef]
- Min, J.; Hao, H.; Zhao, Y.; Hu, Y.; Huang, Q.; Zhu, F.; Zhang, G.; Bi, J.; Yan, S.; Hou, H. Construction of NaNbO3/CdS nanorods composites with pyroelectric effect for enhanced pyrocatalytic and antibacterial activity under room-temperature cold-hot cycles. Colloid Surf. A 2022, 650, 129529. [Google Scholar] [CrossRef]
- Zou, X.; Zhu, R.; Cheng, Z.; Shi, X.; Li, L.; Zhou, Y.; Wang, D.; Wang, W.; Wang, Z.; Shao, Y.; et al. Natural day–night temperature variations driving pyrocatalytic wastewater treatment and CO2 reduction based on room-temperature rhombohedral–tetragonal phase transition of lead-free ferroelectric BZT-0.5BCT fibers. Mater. Chem. Phys. 2022, 291, 126719. [Google Scholar] [CrossRef]
- Wang, H.; Jia, Y.; Xu, T.; Shu, X.; He, Y.; Huang, S.; Yuan, G.; Cui, X.; Li, G.; Wu, Z. Barium calcium titanate @carbon hybrid materials for high-efficiency room-temperature pyrocatalysis. Ceram. Int. 2022, 48, 10498–10505. [Google Scholar] [CrossRef]
- Raufeisen, S.; Stelter, M.; Braeutigam, P. Pyrocatalysis-The DCF assay as a pH-robust tool to determine the oxidation capability of thermally excited pyroelectric powders. PLoS ONE 2020, 15, e0228644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Phuong, P.T.T.; Roake, E.; Khanbareh, H.; Wang, Y.; Dunn, S.; Bowen, C. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials. Joule 2020, 4, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Patel, S.; Singh, V.P.; Vaish, R. Pyroelectric energy harvesting for dye decolorization using Ba0.9Ca0.1TiO3 ceramics. J. Appl. Phys. 2020, 128, 095108. [Google Scholar] [CrossRef]
- Hu, Y.; Hao, H.; Zhao, Y.; Min, J.; Huang, Q.; Zhong, J.; Zhang, G.; Bi, J.; Yan, S.; Hou, H. Construction of pyroelectrically-driven BiFeO3@CuBi2O4 nanofiber composite catalyst for enhanced pyrocatalytic activities under room-temperature cold and hot cycles. Surf. Interfaces 2022, 33, 102191. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, X.; Jia, Y.; Hu, G.; Hu, J.; Yuan, B.; Yu, Y.; Zou, G. Pyroelectric nanoplates for reduction of CO2 to methanol driven by temperature-variation. Nat. Commun. 2021, 12, 318. [Google Scholar] [CrossRef]
- Bai, Y.; Zheng, G.-P.; Shi, S.-Q. Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater. Res. Bull. 2011, 46, 1866–1869. [Google Scholar] [CrossRef]
- Yan, H.; Xiao, D.; Yu, P.; Zhu, J.; Lin, D.; Li, G. The dependence of the piezoelectric properties on the differences of the A-site and B-site ions for (Bi1−xNax)TiO3-based ceramics. Mater. Design 2005, 26, 474–478. [Google Scholar] [CrossRef]
- Smolenskii, G.A.; Isupov, V.A.; Agranovskaya, A.I.; Krainik, N.N. New ferroelectrics of complex composition. Sov. Phys.-Solid State 1961, 2, 2651–2654. [Google Scholar]
- Behara, S.; Ghatti, L.; Kanthamani, S.; Dumpala, M.; Thomas, T. Structural, optical, and Raman studies of Gd doped sodium bismuth titanate. Ceram. Int. 2018, 44, 12118–12124. [Google Scholar] [CrossRef]
- Khaliq, A.; Sheeraz, M.; Ullah, A.; Seog, H.J.; Ahn, C.W.; Kim, T.H.; Cho, S.; Kim, I.W. Ferroelectric seeds-induced phase evolution and large electrostrain under reduced poling field in bismuth-based composites. Ceram. Int. 2018, 44, 13278–13285. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhao, Z. Ink-jet printed BNT thin films with improved ferroelectric properties via annealing in wet air. Ceram. Int. 2018, 44, 10700–10707. [Google Scholar] [CrossRef]
- Fleischer, C.; Chatzitakis, A.; Norby, T. Intrinsic photoelectrocatalytic activity in oriented, photonic TiO2 nanotubes. Mat. Sci. Semicon. Proc. 2018, 88, 186–191. [Google Scholar] [CrossRef]
- Xu, X.; Xiao, L.; Wu, Z.; Jia, Y.; Ye, X.; Wang, F.; Yuan, B.; Yu, Y.; Huang, H.; Zou, G. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite. Nano Energy 2020, 78, 105351. [Google Scholar] [CrossRef]
- Lei, H.; Wu, M.; Mo, F.; Ji, S.; Dong, X.; Wu, Z.; Gao, J.; Yang, Y.; Jia, Y. Tribo-catalytic degradation of organic pollutants through bismuth oxyiodate triboelectrically harvesting mechanical energy. Nano Energy 2020, 78, 105290. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Wu, Z.; Jia, Y.; Ma, J.; Chen, W.; Zhang, L.; Yang, J.; Liu, Y. Strong tribocatalytic dye decomposition through utilizing triboelectric energy of barium strontium titanate nanoparticles. Nano Energy 2019, 63, 103832. [Google Scholar] [CrossRef]
- Reddy, J.K.; Srinivas, B.; Kumari, V.D.; Subrahmanyam, M. Sm3+-doped Bi2O3 photocatalyst prepared by hydrothermal synthesis. ChemCatChem 2009, 1, 492–496. [Google Scholar]
- Lee, Y.; Watanabe, T.; Takata, T.; Kondo, J.N.; Hara, M.; Yoshimura, M.; Domen, K. Preparation and characterization of sodium tantalate thin films by hydrothermal− electrochemical synthesis. Chem. Mater. 2005, 17, 2422–2426. [Google Scholar] [CrossRef]
- Sun, Z.H.; Kim, C.H.; Moon, H.B.; Jang, Y.H.; Cho, J.H. Effect of Mn doping on the electronic structures of CaCu3Ti4O12 ceramics. J. Korean Phys. Soc. 2009, 54, 881–885. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Chen, L.; Wu, Z.; Chen, J.; Jia, Y.; Hu, Y. Pyroelectric Pb(Zr0.52Ti0.48)O3 polarized ceramic with strong pyro-driven-catalysis for dye wastewater decomposition. Ceram. Int. 2019, 45, 11934–11938. [Google Scholar] [CrossRef]
- Wu, J.; Mao, W.; Wu, Z.; Xu, X.; You, H.; Xue, A.X.; Jia, Y. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation. Nanoscale 2016, 8, 7343–7350. [Google Scholar] [CrossRef]
- Yang, X.Z.; Yang, D.J.; Zhu, H.Y.; Liu, J.W.; Wayde, N.M.; Ray, F.; Lisa, D.; Shen, Y.N. Mesoporous structure with size controllable anatase attached on silicate layers for efficient photocatalysis. J. Phys. Chem. C 2009, 113, 8243–8248. [Google Scholar]
- Testino, A.; Bellobono, I.R.; Buscaglia, V.; Canevali, C.; D’Arienzo, M.; Polizzi, S.; Scotti, R.; Morazzoni, F. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 2007, 129, 3564–3575. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, W.; Lei, P.; Zhao, J.; Serpone, N. Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: Mechanistic implications. Chem. Eur. J. 2004, 10, 1956–1965. [Google Scholar] [CrossRef]
- Wang, C.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Pyroelectric catalysis. Nano Energy 2020, 78, 105371. [Google Scholar] [CrossRef]
- Zhao, T.; Zai, J.; Xu, M.; Zou, Q.; Su, Y.; Wang, K.; Qian, X. Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm 2011, 13, 4010. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Wang, H.; Tang, C.; Wang, Y.; Liang, C.; Cai, W.; Zhang, L. In situ self-assembly synthesis and photocatalytic performance of hierarchical Bi0.5Na0.5TiO3 micro/nanostructures. J. Mater. Chem. 2009, 19, 2253. [Google Scholar] [CrossRef]
- Baskar, G.; Aiswarya, R. Trends in catalytic production of biodiesel from various feedstocks. Renew. Sust. Energy Rev. 2016, 57, 496–504. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, W.; Gao, E.; Zhang, L.; Sun, S. Bismuth-induced integration of solar energy conversion with synergistic low-temperature catalysis in Ce1–xBixO2−δ nanorods. J. Phys. Chem. C 2013, 117, 24242–24249. [Google Scholar] [CrossRef]
- Yu, C.; Tan, M.; Tao, C.; Hou, Y.; Liu, C.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Remarkably enhanced piezo-photocatalytic performance in BaTiO3/CuO heterostructures for organic pollutant degradation. J. Adv. Ceram. 2022, 11, 414–426. [Google Scholar] [CrossRef]
- He, T.; Cao, Z.; Li, G.; Jia, Y.; Peng, B. High efficiently harvesting visible light and vibration energy in (1−x)AgNbO3–xLiTaO3 solid solution around antiferroelectric–ferroelectric phase boundary for dye degradation. J. Adv. Ceram. 2022, 11, 1641–1653. [Google Scholar] [CrossRef]
- Mani, A.D.; Li, J.; Wang, Z.; Zhou, J.; Xiang, H.; Zhao, J.; Deng, L.; Yang, H. Coupling of piezocatalysis and photocatalysis for efficient degradation of methylene blue by Bi0.9Gd0.07La0.03FeO3 nanotubes. J. Adv. Ceram. 2022, 11, 1069–1081. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Wu, S.; Hong, S.; Shi, X.; Guo, D.; Zhang, Y.; Xu, X.; Chen, Z.; Jia, Y. Lead-Free Bi0.5Na0.5TiO3 Ferroelectric Nanomaterials for Pyro-Catalytic Dye Pollutant Removal under Cold-Hot Alternation. Nanomaterials 2022, 12, 4091. https://doi.org/10.3390/nano12224091
Wu Z, Wu S, Hong S, Shi X, Guo D, Zhang Y, Xu X, Chen Z, Jia Y. Lead-Free Bi0.5Na0.5TiO3 Ferroelectric Nanomaterials for Pyro-Catalytic Dye Pollutant Removal under Cold-Hot Alternation. Nanomaterials. 2022; 12(22):4091. https://doi.org/10.3390/nano12224091
Chicago/Turabian StyleWu, Zheng, Siqi Wu, Siqi Hong, Xiaoyu Shi, Di Guo, Yan Zhang, Xiaoli Xu, Zhi Chen, and Yanmin Jia. 2022. "Lead-Free Bi0.5Na0.5TiO3 Ferroelectric Nanomaterials for Pyro-Catalytic Dye Pollutant Removal under Cold-Hot Alternation" Nanomaterials 12, no. 22: 4091. https://doi.org/10.3390/nano12224091
APA StyleWu, Z., Wu, S., Hong, S., Shi, X., Guo, D., Zhang, Y., Xu, X., Chen, Z., & Jia, Y. (2022). Lead-Free Bi0.5Na0.5TiO3 Ferroelectric Nanomaterials for Pyro-Catalytic Dye Pollutant Removal under Cold-Hot Alternation. Nanomaterials, 12(22), 4091. https://doi.org/10.3390/nano12224091