A Voltage-Modulated Nanostrip Spin-Wave Filter and Spin Logic Device Thereof
Abstract
:1. Introduction
2. Model and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vogel, M.; Chumak, A.V.; Waller, E.H.; Langner, T.; Vasyuchka, V.I.; Hillebrands, B.; von Freymann, G. Optically Reconfigurable Magnetic Materials. Nat. Phys. 2015, 11, 487. [Google Scholar] [CrossRef] [Green Version]
- Kruglyak, V.V.; Demokritov, S.O.; Grundler, D. Magnonics. J. Phys. D Appl. Phys. 2010, 43, 260301. [Google Scholar] [CrossRef]
- Kim, S.-K. Micromagnetic Computer Simulations of Spin Waves in Nanometre-Scale Patterned Magnetic Elements. J. Phys. D Appl. Phys. 2010, 43, 264004. [Google Scholar] [CrossRef]
- Tacchi, S.; Duerr, G.; Klos, J.W.; Madami, M.; Neusser, S.; Gubbiotti, G.; Carlotti, G.; Krawczyk, M.; Grundler, D. Forbidden Band Gaps in the Spin-Wave Spectrum of a Two-Dimensional Bicomponent Magnonic Crystal. Phys. Rev. Lett. 2012, 109, 137202. [Google Scholar] [CrossRef] [PubMed]
- Chumak, V.; Serga, A.A.; Hillebrands, B. Magnon Transistor for All-Magnon Data Processing. Nat. Commun. 2014, 5, 4700. [Google Scholar] [CrossRef] [Green Version]
- Chumak, V.; Vasyuchka, V.; Serga, A.; Hillebrands, B. Magnon Spintronics. Nat. Phys. 2015, 11, 453. [Google Scholar] [CrossRef]
- Chumak, V.; Serga, A.A.; Hillebrands, B. Magnonic Crystals for Data Processing. J. Phys. D Appl. Phys. 2017, 50, 244001. [Google Scholar] [CrossRef]
- Kalinikos, A.; Kostylev, M.P.; Kozhus, N.V.; Slavin, A.N. The Dipole-Exchange Spin Wave Spectrum for Anisotropic Ferromagnetic Films with Mixed Exchange Boundary Conditions. J. Phys. Condens. Matter 1990, 2, 9861. [Google Scholar] [CrossRef]
- Lee, K.-S.; Han, D.-S.; Kim, S.-K. Physical Origin and Generic Control of Magnonic Band Gaps of Dipole-Exchange Spin Waves in Width-Modulated Nanostrip Waveguides. Phys. Rev. Lett. 2009, 102, 127202. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Chumak, A.V.; Jin, L.; Zhang, H.; Hillebrands, B.; Zhong, Z. Voltage-Controlled Nanoscale Reconfigurable Magnonic Crystal. Phys. Rev. B 2017, 95, 134433. [Google Scholar] [CrossRef]
- Wang, Z.K.; Zhang, V.L.; Lim, H.S.; Ng, S.C.; Kuok, M.H.; Jain, S.; Adeyeye, A.O. Observation of Frequency Band Gaps in a One-Dimensional Nanostructured Magnonic Crystal. Appl. Phys. Lett. 2009, 94, 083112. [Google Scholar] [CrossRef] [Green Version]
- Gubbiotti, G.; Tacchi, S.; Madami, M.; Carlotti, G.; Yang, Z.; Ding, J.; Adeyeye, A.O.; Kostylev, M. Collective Spin Excitations in Bicomponent Magnonic Crystals Consisting of Bilayer Permalloy/Fe Nanowires. Phys. Rev. B 2016, 93, 184411. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.S.; Lim, H.S.; Wang, Z.K.; Piramanayagam, S.N.; Ng, S.C.; Kuok, M.H. Micromagnetic Study of Spin Wave Propagation in Bicomponent Magnonic Crystal Waveguides. Appl. Phys. Lett. 2011, 98, 153107. [Google Scholar] [CrossRef]
- Ma, F.; Zhou, Y. Interfacial Dzialoshinskii–Moriya Interaction Induced Nonreciprocity of Spin Waves in Magnonic Waveguides. RSC Adv. 2014, 4, 46454. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Lee, K.-S.; Han, D.-S. A Gigahertz-Range Spin-Wave Filter Composed of Width-Modulated Nanostrip Magnonic-Crystal Waveguides. Appl. Phys. Lett. 2009, 95, 082507. [Google Scholar] [CrossRef] [Green Version]
- Chumak, V.; Pirro, P.; Serga, A.A.; Kostylev, M.P.; Stamps, R.L.; Schultheiss, H.; Vogt, K.; Hermsdoerfer, S.J.; Laegel, B.; Beck, P.A.; et al. Spin-Wave Propagation in a Microstructured Magnonic Crystal. Appl. Phys. Lett. 2009, 95, 262508. [Google Scholar] [CrossRef] [Green Version]
- Obry; Pirro, P.; Brächer, T.; Chumak, A.V.; Osten, J.; Ciubotaru, F.; Serga, A.A.; Fassbender, J.; Hillebrands, B. A Micro-Structured Ion-Implanted Magnonic Crystal. Appl. Phys. Lett. 2013, 102, 202403. [Google Scholar] [CrossRef]
- Frey, P.; Nikitin, A.A.; Bozhko, D.A.; Bunyaev, S.A.; Kakazei, G.N.; Ustinov, A.B.; Kalinikos, B.A.; Ciubotaru, F.; Chumak, A.V.; Wang, Q.; et al. Reflection-Less Width-Modulated Magnonic Crystal. Commun. Phys. 2020, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, A.; Ustinov, A.B.; Semenov, A.A.; Chumak, A.V.; Serga, A.A.; Vasyuchka, V.I.; Lähderanta, E.; Kalinikos, B.A.; Hillebrands, B. A Spin-Wave Logic Gate Based on a Width-Modulated Dynamic Magnonic Crystal. Appl. Phys. Lett. 2015, 106, 102405. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-G.; Li, M.; Hageman, S.; Chien, C.L. Electric-Field-Assisted Switching in Magnetic Tunnel Junctions. Nat. Mater. 2011, 11, 64. [Google Scholar] [CrossRef]
- Bauer, U.; Emori, S.; Beach, G.S.D. Voltage-Controlled Domain Wall Traps in Ferromagnetic Nanowires. Nat. Nanotechnol. 2013, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Rana; Otani, Y. Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices. Phys. Rev. Appl. 2018, 9, 014033. [Google Scholar] [CrossRef]
- Choudhury, S.; Chaurasiya, A.K.; Mondal, A.K.; Rana, B.; Miura, K.; Takahashi, H.; Otani, Y.; Barman, A. Voltage Controlled On-Demand Magnonic Nanochannels. Sci. Adv. 2020, 6, eaba5457. [Google Scholar] [CrossRef] [PubMed]
- Donahue, M.J.; Porter, D.G. OOMMFUser’s Guide, Version 1.2a5. Available online: https://math.nist.gov/oommf/doc/userguide12a5/userguide12a5_20120928.pdf (accessed on 28 September 2012).
- Kumar; Sabareesan, P.; Wang, W.; Fangohr, H.; Barman, A. Effect of Hole Shape on Spin-Wave Band Structure in One-Dimensional Magnonic Antidot Waveguide. J. Appl. Phys. 2013, 114, 023910. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Fitzell, K.; Wu, D.; Karaba, C.T.; Buditama, A.; Yu, G.; Wong, K.L.; Altieri, N.; Grezes, C.; Kioussis, N.; et al. Enhancement of Voltage-Controlled Magnetic Anisotropy through Precise Control of Mg Insertion Thickness at CoFeB|MgO Interface. Appl. Phys. Lett. 2017, 110, 052401. [Google Scholar] [CrossRef] [Green Version]
- Nozaki, T.; Kozioł-Rachwał, A.; Tsujikawa, M.; Shiota, Y.; Xu, X.; Ohkubo, T.; Tsukahara, T.; Miwa, S.; Suzuki, M.; Tamaru, S.; et al. Highly Efficient Voltage Control of Spin and Enhanced Interfacial Perpendicular Magnetic Anisotropy in Iridium-Doped Fe/Mgo Magnetic Tunnel Junctions. NPG Asia Mater. 2017, 9, e451. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Dong, B.; Hu, Q.; Zhang, Y.; Wang, G.; Meng, H.; Zhao, C. A Voltage-Modulated Nanostrip Spin-Wave Filter and Spin Logic Device Thereof. Nanomaterials 2022, 12, 3838. https://doi.org/10.3390/nano12213838
Li H, Dong B, Hu Q, Zhang Y, Wang G, Meng H, Zhao C. A Voltage-Modulated Nanostrip Spin-Wave Filter and Spin Logic Device Thereof. Nanomaterials. 2022; 12(21):3838. https://doi.org/10.3390/nano12213838
Chicago/Turabian StyleLi, Huihui, Bowen Dong, Qi Hu, Yunsen Zhang, Guilei Wang, Hao Meng, and Chao Zhao. 2022. "A Voltage-Modulated Nanostrip Spin-Wave Filter and Spin Logic Device Thereof" Nanomaterials 12, no. 21: 3838. https://doi.org/10.3390/nano12213838
APA StyleLi, H., Dong, B., Hu, Q., Zhang, Y., Wang, G., Meng, H., & Zhao, C. (2022). A Voltage-Modulated Nanostrip Spin-Wave Filter and Spin Logic Device Thereof. Nanomaterials, 12(21), 3838. https://doi.org/10.3390/nano12213838