Resistive Switching Memory Cell Property Improvement by Al/SrZrTiO3/Al/SrZrTiO3/ITO with Embedded Al Layer
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhamad, N.F.; Osman, R.A.M.; Idris, M.S.; Yasin, M.N.M. Physical and electrical properties of SrTiO3 and SrZrO3. EPJ Web Conf. 2017, 162, 01052. [Google Scholar] [CrossRef]
- Muhamad, N.F.; Osman, R.A.M.; Idris, M.S.; Jamlos, F.; Hambali, N.A.M.A. Microwave and Electrical Properties of Zr-Doped SrTiO3 for Dielectric Resonator Antenna Application. Solid State Phenom. 2018, 280, 142–148. [Google Scholar] [CrossRef]
- Lee, K.-J.; Chang, Y.-C.; Lee, C.-J.; Wang, L.-W.; Chou, D.-W.; Chiang, T.-K.; Wang, Y.-H. Effects of Ni in Strontium Titanate Nickelate Thin Films for Flexible Nonvolatile Memory Applications. IEEE Trans. Electron Devices 2017, 64, 2001–2007. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, P.; Pan, L.; Qi, L.; Yu, F.; Gao, C. Flexible nonvolatile resistive memory devices based on SrTiO3 nanosheets and polyvinylpyrrolidone composites. J. Mater. Chem. C 2017, 5, 9799–9805. [Google Scholar] [CrossRef]
- Padmini, E.; Ramachandran, K. Electrical properties of Mo-doped SrTiO3 prepared by solid state reaction method. Mater. Res. Express 2019, 6, 115919. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Xu, J.; Liu, G.; Xie, H.; Yang, L. Effects of Mg Doping Concentration on Resistive Switching Behavior and Properties of SrTi1-yMgyO3 Films. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2019, 34, 888–892. [Google Scholar] [CrossRef]
- Zhang, T.F.; Tang, X.G.; Liu, Q.X.; Jiang, Y.P. Electrode effect regulated resistance switching and selector characteristics in Nb doped SrTiO3 single crystal for potential cross-point memory applications. J. Alloys Compd. 2018, 730, 516–520. [Google Scholar] [CrossRef]
- Bera, J.; Rout, S.K. SrTiO3–SrZrO3 solid solution: Phase formation kinetics and mechanism through solid-oxide reaction. Mater. Res. Bull. 2005, 40, 1187–1193. [Google Scholar] [CrossRef]
- Wei, C.Y.; Huang, W.C.; Yang, C.K.; Chang, Y.Y.; Wang, Y.H. Low-operating-voltage pentacene-based transistors and inverters with solution-processed barium zirconate titanate insulators. IEEE Electron Device Lett. 2011, 32, 1755–1757. [Google Scholar] [CrossRef]
- Lee, K.-J.; Wang, Y.-H. Effect of Alkaline Earth Metal on AZrOx (A = Mg, Sr, Ba) Memory Application. Gels 2022, 8, 20. [Google Scholar] [CrossRef]
- Yang, Y.C.; Pan, F.; Zeng, F.; Liu, M. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization. J. Appl. Phys. 2009, 106, 123705-1–123705-5. [Google Scholar] [CrossRef]
- Chung, Y.L.; Lai, Y.; Chen, Y.C.; Chen, J.S. Schottky barrier mediated single-polarity resistive switching in Pt layer-included TiOx memory device. ACS Appl. Mater. Interfaces 2011, 3, 1918–1924. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Sung, Y.; Lee, I.; Kim, J.; Sohn, H.; Ko, D.H. Enhanced bipolar resistive switching of HfO2 with a Ti interlayer. Appl. Phys. A 2011, 102, 997–1001. [Google Scholar] [CrossRef]
- Liu, Q.; Long, S.; Wang, W.; Zuo, Q.; Zhang, S.; Chen, J.; Liu, M. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. IEEE Electron Device Lett. 2009, 30, 1335–1337. [Google Scholar] [CrossRef]
- Ruth, E.; McKnight, A.; Kennedy, B.J.; Zhou, Q.; Carpenter, M.A. Elastic anomalies associated with transformation sequences in perovskites: II. The strontium zirconate–titanate Sr (Zr, Ti)O3 solid solution series. J. Phys. Condens. Matter 2008, 21, 015902. [Google Scholar] [CrossRef][Green Version]
- Dixit, D.; Agrawal, C.; Mohapatra, Y.N.; Majumder, S.B.; Katiyar, R.S. Studies on the dielectric and relaxor behavior of sol–gel derived barium strontium zirconate titanate thin films. Mater. Lett. 2007, 61, 3685–3688. [Google Scholar] [CrossRef]
- Huang, S.; Lee, K.-J.; Wang, Y.-H. Magnesium Zirconate Titanate Thin Films Used as an NO2 Sensing Layer for Gas Sensor Applications Developed Using a Sol–Gel Method. Sensors 2021, 21, 2825. [Google Scholar] [CrossRef] [PubMed]
- Avilés, M.A.; Córdoba, J.M.; Sayagués, M.J.; Gotor, F.J. Mechanochemical synthesis of Ti1−xZrxB2 and Ti1−xHfxB2 solid solutions. J. Phys. Chem. B 1998, 102, 5094–5098. [Google Scholar] [CrossRef]
- Victor, S.B. Krupanidhi, Impact of microstructure on electrical characteristics of laser ablation grown ZrTiO4 thin films on Si substrate. J. Phys. D. Appl. Phys 2005, 38, 41–50. [Google Scholar] [CrossRef]
- Praveen, T.; Rose, T.P.; Saji, K.J. Top electrode dependent resistive switching in M/ZnO/ITO memristors, M = Al, ITO, Cu, and Au. Microelectron. J. 2022, 121, 105388. [Google Scholar] [CrossRef]
- Zhang, W.; Kong, Z.J.; Cao, Y.Z.; Li, D.A.; Wang, G.L.; Zhu, L.; Li, X.; Cao, Y.-Q.; Wu, D. Bipolar Resistive Switching Characteristics of HfO2/TiO2/HfO2 Trilayer-Structure RRAM Devices on Pt and TiN-Coated Substrates Fabricated by Atomic Layer Deposition. Nanoscale Res. Lett. 2017, 12, 393. [Google Scholar] [CrossRef] [PubMed]
- Saleem, F.; Simanjuntak, M.; Chandrasekaran, S.; Rajasekaran, S.; Tseng, T.-Y.; Prodromakis, T. Transformation of digital to analog switching in TaOx-based memristor device for neuromorphic applications. Appl. Phys. Lett. 2021, 118, 112103. [Google Scholar] [CrossRef]
- Lampert, M.A. Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Phys. Rev. J. Arch. 1956, 103, 1648. [Google Scholar] [CrossRef]
- Chiu, F.C. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 2014, 1–18. [Google Scholar] [CrossRef]
- Wang, Z.S.; Zeng, F.; Yang, J.; Chen, C.; Yang, Y.C.; Pan, F. Reproducible and controllable organic resistive memory based on Al/poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate)/Al structure. Appl. Phys. Lett. 2010, 97, 253301. [Google Scholar] [CrossRef]
- Yang, Y.C.; Pan, F.; Liu, Q.; Liu, M.; Zeng, F. Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application. Nano Lett. 2009, 9, 1636–1643. [Google Scholar] [CrossRef]
- Park, K.H.; Jung, J.H.; Li, F.; Son, D.I.; Kim, T.W. Carrier transport mechanisms of nonvolatile memory devices based on nanocomposites consisting of ZnO nanoparticles with polymethylmethacrylate nanocomposites sandwiched between two C60 layers. Appl. Phys. Lett. 2008, 93, 132104. [Google Scholar] [CrossRef]
- Sedghi, N.; Davey, W.; Mitrovic, I.Z.; Hall, S. Design and focused ion beam fabrication of single crystal diamond nanobeam cavities. J. Vac. Sci. Technol. 2011, B29, 01AB10. [Google Scholar] [CrossRef]
- Ryu, S.W.; Cho, S.; Park, J.; Kwac, J.; Kim, H.J.; Nishi, Y. Effects of ZrO2 doping on HfO2 resistive switching memory characteristics. Appl. Phys. Lett. 2014, 105, 072102. [Google Scholar] [CrossRef]
- Chen, L.; Dai, Y.W.; Sun, Q.Q.; Guo, J.J.; Zhou, P.; Zhang, D.W. Al2O3/HfO2 functional stack films based resistive switching memories with controlled SET and RESET voltages. Solid State Ion. 2015, 273, 66–69. [Google Scholar] [CrossRef]
- Wong, H.S.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal-oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]









| Insulator Material | Insert Metal | Fabrication of the Insulator | Fabrication of the Insert Metal | Resistance Ratio | Vest (V) | Vreset (V) | Current of HRS (A) | Ref |
|---|---|---|---|---|---|---|---|---|
| ZnO | Cu | Sputter | Sputter | 104 | 0.9 | −0.6 | 10−4 | [11] |
| TiOx | Pt | Thermal oxidation | -- | 105 | 3.7 | −0.9 | 10−8 | [12] |
| HfO2 | Ti | Sputter | Sputter | 50 | 0.7 | −1.3 | 10−3 | [13] |
| ZrO2 | Ti | Electron-beam evaporation | Implant | 104 | 1.3 | −0.66 | 10−9 | [14] |
| SZT | -- | Sol-gel | Sputter | 103 | −1.28 | 2.08 | 10−8 | This work |
| SZT | Al | Sol-gel | Sputter | 107 | −0.32 | 1.28 | 10−10 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-J.; Lin, W.-S.; Wang, L.-W.; Lin, H.-N.; Wang, Y.-H. Resistive Switching Memory Cell Property Improvement by Al/SrZrTiO3/Al/SrZrTiO3/ITO with Embedded Al Layer. Nanomaterials 2022, 12, 4412. https://doi.org/10.3390/nano12244412
Lee K-J, Lin W-S, Wang L-W, Lin H-N, Wang Y-H. Resistive Switching Memory Cell Property Improvement by Al/SrZrTiO3/Al/SrZrTiO3/ITO with Embedded Al Layer. Nanomaterials. 2022; 12(24):4412. https://doi.org/10.3390/nano12244412
Chicago/Turabian StyleLee, Ke-Jing, Wei-Shao Lin, Li-Wen Wang, Hsin-Ni Lin, and Yeong-Her Wang. 2022. "Resistive Switching Memory Cell Property Improvement by Al/SrZrTiO3/Al/SrZrTiO3/ITO with Embedded Al Layer" Nanomaterials 12, no. 24: 4412. https://doi.org/10.3390/nano12244412
APA StyleLee, K.-J., Lin, W.-S., Wang, L.-W., Lin, H.-N., & Wang, Y.-H. (2022). Resistive Switching Memory Cell Property Improvement by Al/SrZrTiO3/Al/SrZrTiO3/ITO with Embedded Al Layer. Nanomaterials, 12(24), 4412. https://doi.org/10.3390/nano12244412

