Multifield-Controlled Terahertz Hybrid Metasurface for Switches and Logic Operations
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Simulation of Electrically Tuned VO2 Bridges
3.2. Simulation of Optically Tuned Ge Layers
3.3. Logic Operation Controlled by a Multifield
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, J.J.; Shrestha, R.; Adelberg, J.; Yeh, C.Y.; Hossain, Z.; Enightly, E.; Jornet, J.M.; Mittleman, D.M. Security and eavesdropping in terahertz wireless links. Nature 2018, 563, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Meijer, A.S.; Berden, G.; Arslanov, D.D.; Ozerov, M.; Jongma, R.T.; van der Zande, W.J. An ultrawide-bandwidth single-sideband modulator for terahertz frequencies. Nat. Photonics 2016, 10, 740–744. [Google Scholar] [CrossRef]
- Boulogeorgos, A.A.A.; Alexiou, A.; Merkle, T.; Schubert, C.; Elschner, R.; Katsiotis, A.; Stavrianos, P.; Kritharidis, D.; Chartsias, P.K.; Kokkoniemi, J.; et al. Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems Beyond 5G. IEEE Commun. Mag. 2018, 56, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Nagatsuma, T.; Horiguchi, S.; Minamikata, Y.; Yoshimizu, Y.; Hisatake, S.; Kuwano, S.; Yoshimoto, N.; Terada, J.; Takahashi, H. Terahertz wireless communications based on photonics technologies. Opt. Express 2013, 21, 23736–23747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeds, A.J.; Shams, H.; Fice, M.J.; Renaud, C.C. TeraHertz Photonics for Wireless Communications. J. Light. Technol. 2015, 33, 579–587. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Zeng, H.X.; Liang, H.J.; Zhang, Y.X.; Wang, L.; Liang, S.X.; Gong, S.; Li, Z.; Yang, Z.Q.; Zhang, X.L.; Lan, F.; et al. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip. Nat. Photonics 2021, 15, 751–757. [Google Scholar] [CrossRef]
- Ramachandran, T.; Faruque, M.R.I.; Islam, M.T.; Khandaker, M.U.; Alqahtani, A.; Bradley, D.A. Development and Analysis of Coding and Tailored Metamaterial for Terahertz Frequency Applications. Materials 2022, 15, 2777. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.J.; Zhang, L.; Xu, Q.; Wang, Q.; Wan, X.; Gu, J.Q.; Tang, W.X.; Qi, M.Q.; Han, J.G.; et al. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz. Adv. Sci. 2016, 3, 1600156. [Google Scholar] [CrossRef]
- Cai, T.; Tang, S.W.; Bin, Z.; Wang, G.M.; Ji, W.Y.; Qian, C.; Wang, Z.J.; Li, E.P.; Chen, H.S. Ultrawideband chromatic aberration-free meta-mirrors. Adv. Photonics 2021, 3, 16001. [Google Scholar] [CrossRef]
- Guo, W.L.; Wang, G.M.; Luo, X.Y.; Chen, K.; Li, H.P.; Feng, Y.J. Dual-Phase Hybrid Metasurface for Independent Amplitude and Phase Control of Circularly Polarized Wave. IEEE Trans. Antennas Propag. 2020, 68, 7705–7710. [Google Scholar] [CrossRef]
- Yu, N.F.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Zheng, B.; Lou, J.; Shen, L.; Yang, Y.H.; Tang, S.W.; Li, E.; Qian, C.; Chen, H.S. Experimental Realization of a Superdispersion-Enabled Ultrabroadband Terahertz Cloak. Adv. Mater. 2020, 34, 2205053. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [Google Scholar] [CrossRef]
- Hu, Y.Z.; You, J.; Tong, M.Y.; Zheng, X.; Xu, Z.J.; Cheng, X.G.; Jiang, T. Pump-Color Selective Control of Ultrafast All-Optical Switching Dynamics in Metaphotonic Devices. Adv. Sci. 2020, 7, 2000799. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, Y.K.; Singh, R. A Toroidal Metamaterial Switch. Adv. Mater. 2018, 30, 1704845. [Google Scholar] [CrossRef]
- Lou, J.; Ma, H.; Wang, J.; Yang, R.S.; Dong, B.W.; Yu, Y.; Wang, J.F.; Zhang, F.L.; Fan, Y.C.; Feng, M.D.; et al. Multifield-Inspired Tunable Carrier Effects Based on Ferroelectric-Silicon PN Heterojunction. Adv. Electron. Mater. 2020, 6, 1900795. [Google Scholar] [CrossRef]
- Shen, L.; Lin, X.; Shalaginov, M.Y.; Low, T.; Zhang, X.M.; Zhang, B.L.; Chen, H.S. Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials. Appl. Phys. Rev. 2020, 7, 021403. [Google Scholar] [CrossRef]
- Chowdhury, D.R.; Singh, R.; O’Hara, J.F.; Chen, H.T.; Taylor, A.J.; Azad, A.K. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Appl. Phys. Lett. 2011, 99, 231101. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Bahk, Y.M.; Kim, D.S. Dynamic Terahertz Plasmonics Enabled by Phase-Change Materials. Adv. Opt. Mater. 2019, 8, 1900548. [Google Scholar] [CrossRef]
- Gopalan, P.; Sensale-Rodriguez, B. 2D Materials for Terahertz Modulation. Adv. Opt. Mater. 2019, 8, 1900550. [Google Scholar] [CrossRef]
- Hu, T.Z.; Jiang, T.; Zhou, J.H.; Hao, H.; Sun, H.; Ouyang, H.; Tong, M.Y.; Tang, Y.X.; Li, H.; You, J.; et al. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy 2020, 68, 104280. [Google Scholar] [CrossRef]
- Das, S.; Wang, Y.D.; Dai, Y.Y.; Li, S.S.; Sun, Z.P. Ultrafast transient sub-bandgap absorption of monolayer MoS2. Light Sci. Appl. 2021, 10, 27. [Google Scholar] [CrossRef]
- Lee, K.; Li, J.; Cheng, L.; Wang, J.; Kumar, D.; Wang, Q.S.; Chen, M.J.; Wu, Y.; Eda, G.; Chia, E.E.M.; et al. Sub-Picosecond Carrier Dynamics Induced by Efficient Charge Transfer in MoTe2/WTe2 van der Waals Heterostructures. ACS Nano 2019, 13, 9587–9594. [Google Scholar] [CrossRef] [PubMed]
- Chanana, A.; Liu, X.J.; Zhang, C.; Vardeny, Z.V.; Nahata, A. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Sci. Adv. 2018, 4, eaar7353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.C.; Tang, B.; Fei, M.; Jie, Q.; Tan, J.Q.; Wang, Q.Q.; Liang, S.; Du, J.J.; Zhang, L.; Dong, H.X.; et al. All-Photonic Miniature Perovskite Encoder with a Terahertz Bandwidth. Laser Photonics Rev. 2020, 14, 1900398. [Google Scholar] [CrossRef]
- Li, Z.Q.; Liu, X.Y.; Zuo, C.L.; Yang, W.; Fang, X.S. Supersaturation-Controlled Growth of Monolithically Integrated Lead-Free Halide Perovskite Single-Crystalline Thin Film for High-Sensitivity Photodetectors. Adv. Mater. 2021, 33, 2103010. [Google Scholar] [CrossRef]
- Dai, Z.J.; Manjappa, M.; Yang, Y.K.; Tan, T.C.W.; Qiang, B.; Han, S.; Wong, L.J.; Xiu, F.X.; Liu, W.W.; Singh, R. High Mobility 3D Dirac Semimetal (Cd3As2) for Ultrafast Photoactive Terahertz Photonics. Adv. Funct. Mater. 2021, 31, 2011011. [Google Scholar] [CrossRef]
- Ding, F. A Review of Multifunction Optical Gap-Surface Plasmon Metasurfaces. Prog. Electromagn. Res. 2020, 174, 55–73. [Google Scholar] [CrossRef]
- Goulain, P.; Koulouklidis, A.D.; Manceau, J.M.; Daskalaki, C.; Paulillo, B.; Maussang, K.; Dhillon, S.; Freeman, J.R.; Li, L.H.; Linfield, E.H.; et al. Femtosecond Broadband Frequency Switch of Terahertz Three-Dimensional Meta-Atoms. ACS Photonics 2021, 8, 1097–1102. [Google Scholar] [CrossRef]
- Lou, J.; Liang, J.G.; Yu, Y.; Ma, H.; Yang, R.S.; Fan, Y.C.; Wang, G.M.; Cai, T. Silicon-Based Terahertz Meta-Devices for Electrical Modulation of Fano Resonance and Transmission Amplitude. Adv. Opt. Mater. 2020, 8, 2000449. [Google Scholar] [CrossRef]
- Meng, C.; Thrane, P.C.V.; Bozhevolnyi, S.I. Full-range birefringence control with piezoelectric MEMS-based metasurfaces. Nat. Commun. 2020, 13, 2071. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.F.; Chen, H.S.; Gao, F. Designer Surface Plasmons Enable Terahertz Cherenkov Radiation. Prog. Electromagn. Res. 2020, 169, 25–32. [Google Scholar] [CrossRef]
- Liu, X.D.; Chen, H.; Liang, S.X.; Zhang, M.; Jiang, Z.D.; Fan, S.T.; Sun, Y.W. Ultrabroadband electrically controllable terahertz modulation based on GaAs Schottky diode structure. APL Photonics 2021, 6, 111301. [Google Scholar] [CrossRef]
- Liu, X.B.; Wang, Q.; Zhang, X.Q.; Li, H.; Xu, Q.; Xu, Y.H.; Chen, X.Y.; Li, S.X.; Liu, M.; Tian, Z.; et al. Thermally Dependent Dynamic Meta-Holography Using a Vanadium Dioxide Integrated Metasurface. Adv. Opt. Mater. 2019, 7, 1900175. [Google Scholar] [CrossRef]
- Lee, S.; Kim, W.T.; Kang, J.H.; Kang, B.J.; Rotermund, F.; Park, Q.H. Single-Layer Metasurfaces as Spectrally Tunable Terahertz Half- and Quarter-Waveplates. ACS Appl. Mater. Interfaces 2019, 11, 7655–7660. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.L.; Pu, M.B.; Liu, K.P.; Guo, Y.H.; Huang, Y.J.; Xie, X.; Li, X.; Yu, H.L.; Luo, X.G. Large-Area and Low-Cost Nanoslit-Based Flexible Metasurfaces for Multispectral Electromagnetic Wave Manipulation. Adv. Opt. Mater. 2019, 7, 1900657. [Google Scholar] [CrossRef]
- Fan, X.Q.; Li, Y.H.; Chen, S.H.; Xing, Y.F.; Pan, T.S. Mechanical Terahertz Modulation by Skin-Like Ultrathin Stretchable Metasurface. Small 2020, 16, 2002484. [Google Scholar] [CrossRef]
- Degl’Innocenti, R.; Kindness, S.J.; Beere, H.E.; Ritchie, D.A. All-integrated terahertz modulators. Nanophotonics 2018, 7, 127–144. [Google Scholar] [CrossRef]
- Shrekenhamer, D.; Chen, W.C.; Padilla, W.J. Liquid Crystal Tunable Metamaterial Absorber. Phys. Rev. Lett. 2013, 110, 177403. [Google Scholar] [CrossRef]
- Kowerdziej, P.; Stanczyk, T.; Parka, J. Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal. Liq. Cryst. 2015, 42, 430–434. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhang, S.J.; Liu, K.; Li, H.Y.; Xu, Y.H.; Chen, J.J.; Lu, Y.C.; Wang, Q.W.; Feng, X.; Wang, K.M.; et al. Reconfigurable and Nonvolatile Terahertz Metadevices Based on a Phase-Change Material. ACS Photonics 2022, 9, 1638–1646. [Google Scholar] [CrossRef]
- Wang, Y.F.; Landreman, P.; Schoen, D.; Okabe, K.; Marshall, A.; Celano, U.; Wong, H.S.P.; Park, J.; Brongersma, M.L. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 2021, 16, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.Y.; Chen, A.P.; Zhang, J.H. Terahertz switching between broadband absorption and narrowband absorption. Opt. Express 2020, 28, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.K.; Hwang, H.Y.; Tao, H.; Strikwerda, A.C.; Fan, K.B.; Keiser, G.R.; Sternbach, A.J.; West, K.G.; Kittiwatanakul, S.; Lu, J.W.; et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487, 345–348. [Google Scholar] [CrossRef]
- Kabir, S.; Nirantar, S.; Zhu, L.C.; Ton-That, C.; Jain, S.K.; Kayani, A.B.; Murdoch, B.J.; Sriram, S.; Walia, S.; Bhaskaran, M. Phase change vanadium dioxide light sensors. Appl. Mater. Today 2020, 21, 100833. [Google Scholar] [CrossRef]
- Ding, F.; Zhong, S.M.; Bozhevolnyi, S.I. Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies. Adv. Opt. Mater. 2018, 6, 1701204. [Google Scholar] [CrossRef]
- Li, X.K.; Tang, S.W.; Ding, F.; Zhong, S.M.; Yang, Y.Q.; Jiang, T.; Zhou, J. Switchable multifunctional terahertz metasurfaces employing vanadium dioxide. Sci. Rep. 2019, 9, 5454. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.Z.; Tong, M.Y.; Xu, Z.J.; Cheng, X.G.; Jiang, T. Spatiotemporal Terahertz Metasurfaces for Ultrafast All-Optical Switching with Electric-Triggered Bistability. Laser Photonics Rev. 2021, 15, 2000456. [Google Scholar] [CrossRef]
- Lu, C.; Lu, Q.J.; Gao, M.; Lin, Y. Dynamic Manipulation of THz Waves Enabled by Phase-Transition VO2 Thin Film. Nanomaterrials 2021, 11, 114. [Google Scholar] [CrossRef]
- Ulbricht, R.; Hendry, E.; Shan, J.; Heinz, T.F.; Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 2011, 83, 543. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.L.; Lou, J.; Xu, X.; Wang, G.M.; Qi, J.H.; Zeng, L.X.; He, J.; Liang, J.G.; Huang, Y.D.; Zhang, D.P.; et al. Multifield Controlled Terahertz Modulator Based on Silicon-Vanadium Dioxide Hybrid Metasurface. Adv. Opt. Mater. 2022, 10, 2102589. [Google Scholar] [CrossRef]
- Wang, L.; Hong, W.J.; Deng, L.; Li, S.F.; Zhang, C.; Zhu, J.F.; Wang, H.J. Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies. Materials 2018, 11, 2040. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.X.; Manjappa, M.; Srivastava, Y.K.; Cong, L.Q.; Kumar, A.; MacDonald, K.F.; Singh, R. Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices. Adv. Mater. 2018, 30, 1705331. [Google Scholar] [CrossRef] [Green Version]
- Lou, J.; Xu, X.; Huang, Y.D.; Yu, Y.; Wang, J.; Fang, G.Y.; Liang, J.G.; Fan, C.H.; Chang, C. Optically Controlled Ultrafast Terahertz Metadevices with Ultralow Pump Threshold. Small 2021, 17, 2104275. [Google Scholar] [CrossRef]
- Liu, H.; Lysenko, S.; Rua, A.; Vikhnin, V.; Zhang, G.; Vasquez, O.; Fernandez, F.E. Laser excitation and excited state dynamics in vanadium dioxide thin film. J. Lumin. 2006, 119, 404–411. [Google Scholar] [CrossRef]
- Hsieh, W.P.; Trigo, M.; Reis, D.A.; Artioli, G.A.; Malavasi, L.; Mao, W.L. Evidence for photo-induced monoclinic metallic VO2 under high pressure. Appl. Phys. Lett. 2014, 104, 21917. [Google Scholar] [CrossRef]
- Lou, J.; Yang, R.S.; Liang, J.G.; Yu, Y.; Zhang, L.; Zhang, C.B.; Li, T.J.; Fan, Y.C.; Zhang, F.L.; Wang, G.M.; et al. Dual-Sensitivity Terahertz Metasensor Based on Lattice–Toroidal-Coupled Resonance. Adv. Photonics Res. 2020, 2, 2000175. [Google Scholar] [CrossRef]
Px | Py | L1 | L2 | L3 | L4 | w1 | w2 |
---|---|---|---|---|---|---|---|
150 | 90 | 50 | 29 | 60 | 15 | 5 | 5 |
w3 | w4 | m1 | m2 | h1 | h2 | h3 | h4 |
6 | 6 | 6 | 12 | 0.5 | 0.3 | 0.5 | 5 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Jiao, Y.; Liang, J.; Lou, J.; Zhang, J.; Lv, J.; Du, X.; Shen, L.; Zheng, B.; Cai, T. Multifield-Controlled Terahertz Hybrid Metasurface for Switches and Logic Operations. Nanomaterials 2022, 12, 3765. https://doi.org/10.3390/nano12213765
Zhao X, Jiao Y, Liang J, Lou J, Zhang J, Lv J, Du X, Shen L, Zheng B, Cai T. Multifield-Controlled Terahertz Hybrid Metasurface for Switches and Logic Operations. Nanomaterials. 2022; 12(21):3765. https://doi.org/10.3390/nano12213765
Chicago/Turabian StyleZhao, Xilai, Yanan Jiao, Jiangang Liang, Jing Lou, Jing Zhang, Jiawen Lv, Xiaohui Du, Lian Shen, Bin Zheng, and Tong Cai. 2022. "Multifield-Controlled Terahertz Hybrid Metasurface for Switches and Logic Operations" Nanomaterials 12, no. 21: 3765. https://doi.org/10.3390/nano12213765
APA StyleZhao, X., Jiao, Y., Liang, J., Lou, J., Zhang, J., Lv, J., Du, X., Shen, L., Zheng, B., & Cai, T. (2022). Multifield-Controlled Terahertz Hybrid Metasurface for Switches and Logic Operations. Nanomaterials, 12(21), 3765. https://doi.org/10.3390/nano12213765